Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 2001 Nov;85(11):1680–1684. doi: 10.1054/bjoc.2001.2109

Tallness and overweight during childhood have opposing effects on breast cancer risk

L Hilakivi-Clarke 1, T Forsén 2, J G Eriksson 2, R Luoto 3, J Tuomilehto 2, C Osmond 4, D J P Barker 4
PMCID: PMC2363976  PMID: 11742488

Abstract

Using birth and school health records we studied how weight and height during childhood affect breast cancer risk among 3447 women born during 1924–33 at the University Hospital of Helsinki, Finland. Through linkages with the National Hospital Discharge Registry and the Cause of Death Registry we identified177 women who during 1971–1995 had been admitted to hospital with breast cancer, of whom 49 had died from the disease. Of these, 135 (76%) were aged 50 years or more at the time of diagnosis, and therefore likely to have been post-menopausal. Hazard ratios for breast cancer rose with increasing weight and length at birth, though neither trend was statistically significant. At each age, from 7 to 15 years, the girls who later developed breast cancer were on average taller and had lower body mass than the other girls. Unadjusted hazard ratios rose across the range of height (P = 0.01 at age 7 years) and fell across the range of body mass index (P = 0.009 at age 7 years). In a simultaneous analysis the hazard ratio for breast cancer was 1.27 (95% CI 0.97–1.78, P = 0.08) for every kilogram increase in birth weight and 1.21 (95% CI 1.06–1.38, P = 0.004) for every kg/m2 decrease in body mass index at 7. Our findings indicate that tallness in childhood is associated with increased risk of developing breast cancer. One possible explanation is persisting high plasma concentrations of insulin-like growth factors in talll women. In contrast, we found that being overweight in childhood reduces breast cancer risk. The increased adipose tissue-derived oestrogen levels in overweight children could induce early breast differentiation and eliminate some targets for malignant transformation. © 2001 Cancer Research Campaign http://www.bjcancer.com

Keywords: breast cancer, body mass, height, childhood

Full Text

The Full Text of this article is available as a PDF (64.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berkey C. S., Frazier A. L., Gardner J. D., Colditz G. A. Adolescence and breast carcinoma risk. Cancer. 1999 Jun 1;85(11):2400–2409. doi: 10.1002/(sici)1097-0142(19990601)85:11<2400::aid-cncr15>3.0.co;2-o. [DOI] [PubMed] [Google Scholar]
  2. Braun M. M., Ahlbom A., Floderus B., Brinton L. A., Hoover R. N. Effect of twinship on incidence of cancer of the testis, breast, and other sites (Sweden). Cancer Causes Control. 1995 Nov;6(6):519–524. doi: 10.1007/BF00054160. [DOI] [PubMed] [Google Scholar]
  3. Cerhan J. R., Kushi L. H., Olson J. E., Rich S. S., Zheng W., Folsom A. R., Sellers T. A. Twinship and risk of postmenopausal breast cancer. J Natl Cancer Inst. 2000 Feb 2;92(3):261–265. doi: 10.1093/jnci/92.3.261. [DOI] [PubMed] [Google Scholar]
  4. Cleary M. P., Maihle N. J. The role of body mass index in the relative risk of developing premenopausal versus postmenopausal breast cancer. Proc Soc Exp Biol Med. 1997 Oct;216(1):28–43. doi: 10.3181/00379727-216-44153b. [DOI] [PubMed] [Google Scholar]
  5. Cold S., Hansen S., Overvad K., Rose C. A woman's build and the risk of breast cancer. Eur J Cancer. 1998 Jul;34(8):1163–1174. doi: 10.1016/s0959-8049(97)10167-8. [DOI] [PubMed] [Google Scholar]
  6. Colditz G. A., Frazier A. L. Models of breast cancer show that risk is set by events of early life: prevention efforts must shift focus. Cancer Epidemiol Biomarkers Prev. 1995 Jul-Aug;4(5):567–571. [PubMed] [Google Scholar]
  7. Ekbom A., Trichopoulos D., Adami H. O., Hsieh C. C., Lan S. J. Evidence of prenatal influences on breast cancer risk. Lancet. 1992 Oct 24;340(8826):1015–1018. doi: 10.1016/0140-6736(92)93019-j. [DOI] [PubMed] [Google Scholar]
  8. Ellison P. T. Prediction of age at menarche from annual height increments. Am J Phys Anthropol. 1981 Sep;56(1):71–75. doi: 10.1002/ajpa.1330560108. [DOI] [PubMed] [Google Scholar]
  9. Forsén T., Eriksson J. G., Tuomilehto J., Osmond C., Barker D. J. Growth in utero and during childhood among women who develop coronary heart disease: longitudinal study. BMJ. 1999 Nov 27;319(7222):1403–1407. doi: 10.1136/bmj.319.7222.1403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Forsén T., Eriksson J. G., Tuomilehto J., Teramo K., Osmond C., Barker D. J. Mother's weight in pregnancy and coronary heart disease in a cohort of Finnish men: follow up study. BMJ. 1997 Oct 4;315(7112):837–840. doi: 10.1136/bmj.315.7112.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Frisch R. E., McArthur J. W. Menstrual cycles: fatness as a determinant of minimum weight for height necessary for their maintenance or onset. Science. 1974 Sep 13;185(4155):949–951. doi: 10.1126/science.185.4155.949. [DOI] [PubMed] [Google Scholar]
  12. Gerhard I., Vollmar B., Runnebaum B., Klinga K., Haller U., Kubli F. Weight percentile at birth. II. Prediction by endocrinological and sonographic measurements. Eur J Obstet Gynecol Reprod Biol. 1987 Dec;26(4):313–328. doi: 10.1016/0028-2243(87)90129-8. [DOI] [PubMed] [Google Scholar]
  13. Gowen L. C., Avrutskaya A. V., Latour A. M., Koller B. H., Leadon S. A. BRCA1 required for transcription-coupled repair of oxidative DNA damage. Science. 1998 Aug 14;281(5379):1009–1012. doi: 10.1126/science.281.5379.1009. [DOI] [PubMed] [Google Scholar]
  14. Grubbs C. J., Farnell D. R., Hill D. L., McDonough K. C. Chemoprevention of N-nitroso-N-methylurea-induced mammary cancers by pretreatment with 17 beta-estradiol and progesterone. J Natl Cancer Inst. 1985 Apr;74(4):927–931. [PubMed] [Google Scholar]
  15. Gudas J. M., Nguyen H., Li T., Cowan K. H. Hormone-dependent regulation of BRCA1 in human breast cancer cells. Cancer Res. 1995 Oct 15;55(20):4561–4565. [PubMed] [Google Scholar]
  16. Hankinson S. E., Willett W. C., Colditz G. A., Hunter D. J., Michaud D. S., Deroo B., Rosner B., Speizer F. E., Pollak M. Circulating concentrations of insulin-like growth factor-I and risk of breast cancer. Lancet. 1998 May 9;351(9113):1393–1396. doi: 10.1016/S0140-6736(97)10384-1. [DOI] [PubMed] [Google Scholar]
  17. Hilakivi-Clarke L., Clarke R., Onojafe I., Raygada M., Cho E., Lippman M. A maternal diet high in n - 6 polyunsaturated fats alters mammary gland development, puberty onset, and breast cancer risk among female rat offspring. Proc Natl Acad Sci U S A. 1997 Aug 19;94(17):9372–9377. doi: 10.1073/pnas.94.17.9372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hiney J. K., Srivastava V., Nyberg C. L., Ojeda S. R., Dees W. L. Insulin-like growth factor I of peripheral origin acts centrally to accelerate the initiation of female puberty. Endocrinology. 1996 Sep;137(9):3717–3728. doi: 10.1210/endo.137.9.8756538. [DOI] [PubMed] [Google Scholar]
  19. Huang Z., Hankinson S. E., Colditz G. A., Stampfer M. J., Hunter D. J., Manson J. E., Hennekens C. H., Rosner B., Speizer F. E., Willett W. C. Dual effects of weight and weight gain on breast cancer risk. JAMA. 1997 Nov 5;278(17):1407–1411. [PubMed] [Google Scholar]
  20. Hulka B. S., Stark A. T. Breast cancer: cause and prevention. Lancet. 1995 Sep 30;346(8979):883–887. doi: 10.1016/s0140-6736(95)92713-1. [DOI] [PubMed] [Google Scholar]
  21. Hunter D. J., Willett W. C. Nutrition and breast cancer. Cancer Causes Control. 1996 Jan;7(1):56–68. doi: 10.1007/BF00115638. [DOI] [PubMed] [Google Scholar]
  22. Johnson M. R., Abbas A., Nicolaides K. H. Maternal plasma levels of human chorionic gonadotrophin, oestradiol and progesterone in multifetal pregnancies before and after fetal reduction. J Endocrinol. 1994 Nov;143(2):309–312. doi: 10.1677/joe.0.1430309. [DOI] [PubMed] [Google Scholar]
  23. Juul A., Dalgaard P., Blum W. F., Bang P., Hall K., Michaelsen K. F., Müller J., Skakkebaek N. E. Serum levels of insulin-like growth factor (IGF)-binding protein-3 (IGFBP-3) in healthy infants, children, and adolescents: the relation to IGF-I, IGF-II, IGFBP-1, IGFBP-2, age, sex, body mass index, and pubertal maturation. J Clin Endocrinol Metab. 1995 Aug;80(8):2534–2542. doi: 10.1210/jcem.80.8.7543116. [DOI] [PubMed] [Google Scholar]
  24. Juul A., Skakkebaek N. E. Prediction of the outcome of growth hormone provocative testing in short children by measurement of serum levels of insulin-like growth factor I and insulin-like growth factor binding protein 3. J Pediatr. 1997 Feb;130(2):197–204. doi: 10.1016/s0022-3476(97)70343-3. [DOI] [PubMed] [Google Scholar]
  25. Le Marchand L., Kolonel L. N., Earle M. E., Mi M. P. Body size at different periods of life and breast cancer risk. Am J Epidemiol. 1988 Jul;128(1):137–152. doi: 10.1093/oxfordjournals.aje.a114936. [DOI] [PubMed] [Google Scholar]
  26. Magnusson C., Baron J., Persson I., Wolk A., Bergström R., Trichopoulos D., Adami H. O. Body size in different periods of life and breast cancer risk in post-menopausal women. Int J Cancer. 1998 Mar 30;76(1):29–34. doi: 10.1002/(sici)1097-0215(19980330)76:1<29::aid-ijc6>3.0.co;2-#. [DOI] [PubMed] [Google Scholar]
  27. Marquis S. T., Rajan J. V., Wynshaw-Boris A., Xu J., Yin G. Y., Abel K. J., Weber B. L., Chodosh L. A. The developmental pattern of Brca1 expression implies a role in differentiation of the breast and other tissues. Nat Genet. 1995 Sep;11(1):17–26. doi: 10.1038/ng0995-17. [DOI] [PubMed] [Google Scholar]
  28. Marshall W. A., Limongi Y. Skeletal maturity and the prediction of age at menarche. Ann Hum Biol. 1976 May;3(3):235–243. doi: 10.1080/03014467600001401. [DOI] [PubMed] [Google Scholar]
  29. Michels K. B., Trichopoulos D., Robins J. M., Rosner B. A., Manson J. E., Hunter D. J., Colditz G. A., Hankinson S. E., Speizer F. E., Willett W. C. Birthweight as a risk factor for breast cancer. Lancet. 1996 Dec 7;348(9041):1542–1546. doi: 10.1016/S0140-6736(96)03102-9. [DOI] [PubMed] [Google Scholar]
  30. Nagasawa H., Yanai R., Shodono M., Nakamura T., Tanabe Y. Effect of neonatally administered estrogen or prolactin on normal and neoplastic mammary growth and serum estradiol-17 beta level in rats. Cancer Res. 1974 Oct;34(10):2643–2646. [PubMed] [Google Scholar]
  31. Nilsson A., Ohlsson C., Isaksson O. G., Lindahl A., Isgaard J. Hormonal regulation of longitudinal bone growth. Eur J Clin Nutr. 1994 Feb;48 (Suppl 1):S150–S160. doi: 10.1007/BF02558817. [DOI] [PubMed] [Google Scholar]
  32. Potischman N., Swanson C. A., Siiteri P., Hoover R. N. Reversal of relation between body mass and endogenous estrogen concentrations with menopausal status. J Natl Cancer Inst. 1996 Jun 5;88(11):756–758. doi: 10.1093/jnci/88.11.756. [DOI] [PubMed] [Google Scholar]
  33. Rajan J. V., Wang M., Marquis S. T., Chodosh L. A. Brca2 is coordinately regulated with Brca1 during proliferation and differentiation in mammary epithelial cells. Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13078–13083. doi: 10.1073/pnas.93.23.13078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Royston P. Constructing time-specific reference ranges. Stat Med. 1991 May;10(5):675–690. doi: 10.1002/sim.4780100502. [DOI] [PubMed] [Google Scholar]
  35. Sanderson M., Williams M. A., Malone K. E., Stanford J. L., Emanuel I., White E., Daling J. R. Perinatal factors and risk of breast cancer. Epidemiology. 1996 Jan;7(1):34–37. doi: 10.1097/00001648-199601000-00007. [DOI] [PubMed] [Google Scholar]
  36. Spillman M. A., Bowcock A. M. BRCA1 and BRCA2 mRNA levels are coordinately elevated in human breast cancer cells in response to estrogen. Oncogene. 1996 Oct 17;13(8):1639–1645. [PubMed] [Google Scholar]
  37. Trentham-Dietz A., Newcomb P. A., Storer B. E., Longnecker M. P., Baron J., Greenberg E. R., Willett W. C. Body size and risk of breast cancer. Am J Epidemiol. 1997 Jun 1;145(11):1011–1019. doi: 10.1093/oxfordjournals.aje.a009057. [DOI] [PubMed] [Google Scholar]
  38. Trichopoulos D. Hypothesis: does breast cancer originate in utero? Lancet. 1990 Apr 21;335(8695):939–940. doi: 10.1016/0140-6736(90)91000-z. [DOI] [PubMed] [Google Scholar]
  39. Vatten L. J., Kvinnsland S. Body height and risk of breast cancer. A prospective study of 23,831 Norwegian women. Br J Cancer. 1990 Jun;61(6):881–885. doi: 10.1038/bjc.1990.197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Yong L. C., Brown C. C., Schatzkin A., Schairer C. Prospective study of relative weight and risk of breast cancer: the Breast Cancer Detection Demonstration Project follow-up study, 1979 to 1987-1989. Am J Epidemiol. 1996 May 15;143(10):985–995. doi: 10.1093/oxfordjournals.aje.a008681. [DOI] [PubMed] [Google Scholar]
  41. Ziegler R. G. Anthropometry and breast cancer. J Nutr. 1997 May;127(5 Suppl):924S–928S. doi: 10.1093/jn/127.5.924S. [DOI] [PubMed] [Google Scholar]
  42. de Waard F., Trichopoulos D. A unifying concept of the aetiology of breast cancer. Int J Cancer. 1988 May 15;41(5):666–669. doi: 10.1002/ijc.2910410505. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES