Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 2001 Dec;85(12):2010–2016. doi: 10.1054/bjoc.2001.2166

Effect of VEGF receptor inhibitor PTK787/ZK222548 combined with ionizing radiation on endothelial cells and tumour growth

C Hess 1, V Vuong 1, I Hegyi 2, O Riesterer 1, J Wood 3, D Fabbro 3, C Glanzmann 1, S Bodis 1, M Pruschy 1
PMCID: PMC2364010  PMID: 11747347

Abstract

The vascular endothelial growth factor (VEGF) receptor is a major target for anti-angiogenesis-based cancer treatment. Here we report the treatment effect of ionizing radiation in combination with the novel orally bioavailable VEGF receptor tyrosine kinase inhibitor PTK787/ZK222584 on endothelial cell proliferation in vitro and with tumour xenografts in vivo. Combined treatment of human umbilical vein endothelial cells with increasing doses of PTK787/ZK222584 and ionizing radiation abrogated VEGF-dependent proliferation in a dose-dependent way, but inhibition of endothelial cell proliferation was not due to apoptosis induction. In vivo, a combined treatment regimen of PTK787/ZK222584 (4 × 100 mg/kg) during 4 consecutive days in combination with ionizing radiation (4 × 3 Gy) exerted a substantial tumour growth delay for radiation-resistant p53-disfunctional tumour xenografts derived from SW480 colon adenocarcinoma cells while each treatment modality alone had only a minimal effect on tumour size and neovascularization. SW480 tumours from animals that received a combined treatment regimen, displayed not only an extended tumour growth delay but also a significant decrease in the number of microvessels in the tumour xenograft. These results support the model of a cooperative antitumoural effect of angiogenesis inhibitor and irradiation and show that the orally bioavailable VEGF receptor tyrosine kinase inhibitor PTK787/ZK222584 is suitable for combination therapy with irradiation. © 2001 Cancer Research Campaign http://www.bjcancer.com

Keywords: angiogenesis, radiosensitization, VEGF-dependent proliferation, tumour growth control

Full Text

The Full Text of this article is available as a PDF (136.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asano M., Yukita A., Matsumoto T., Kondo S., Suzuki H. Inhibition of tumor growth and metastasis by an immunoneutralizing monoclonal antibody to human vascular endothelial growth factor/vascular permeability factor121. Cancer Res. 1995 Nov 15;55(22):5296–5301. [PubMed] [Google Scholar]
  2. Borgström P., Hillan K. J., Sriramarao P., Ferrara N. Complete inhibition of angiogenesis and growth of microtumors by anti-vascular endothelial growth factor neutralizing antibody: novel concepts of angiostatic therapy from intravital videomicroscopy. Cancer Res. 1996 Sep 1;56(17):4032–4039. [PubMed] [Google Scholar]
  3. Brown L. F., Berse B., Jackman R. W., Tognazzi K., Manseau E. J., Senger D. R., Dvorak H. F. Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in adenocarcinomas of the gastrointestinal tract. Cancer Res. 1993 Oct 1;53(19):4727–4735. [PubMed] [Google Scholar]
  4. Clauss M., Weich H., Breier G., Knies U., Röckl W., Waltenberger J., Risau W. The vascular endothelial growth factor receptor Flt-1 mediates biological activities. Implications for a functional role of placenta growth factor in monocyte activation and chemotaxis. J Biol Chem. 1996 Jul 26;271(30):17629–17634. doi: 10.1074/jbc.271.30.17629. [DOI] [PubMed] [Google Scholar]
  5. Drevs J., Hofmann I., Hugenschmidt H., Wittig C., Madjar H., Müller M., Wood J., Martiny-Baron G., Unger C., Marmé D. Effects of PTK787/ZK 222584, a specific inhibitor of vascular endothelial growth factor receptor tyrosine kinases, on primary tumor, metastasis, vessel density, and blood flow in a murine renal cell carcinoma model. Cancer Res. 2000 Sep 1;60(17):4819–4824. [PubMed] [Google Scholar]
  6. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med. 1995 Jan;1(1):27–31. doi: 10.1038/nm0195-27. [DOI] [PubMed] [Google Scholar]
  7. Fong T. A., Shawver L. K., Sun L., Tang C., App H., Powell T. J., Kim Y. H., Schreck R., Wang X., Risau W. SU5416 is a potent and selective inhibitor of the vascular endothelial growth factor receptor (Flk-1/KDR) that inhibits tyrosine kinase catalysis, tumor vascularization, and growth of multiple tumor types. Cancer Res. 1999 Jan 1;59(1):99–106. [PubMed] [Google Scholar]
  8. Geng L., Donnelly E., McMahon G., Lin P. C., Sierra-Rivera E., Oshinka H., Hallahan D. E. Inhibition of vascular endothelial growth factor receptor signaling leads to reversal of tumor resistance to radiotherapy. Cancer Res. 2001 Mar 15;61(6):2413–2419. [PubMed] [Google Scholar]
  9. Goldman C. K., Kendall R. L., Cabrera G., Soroceanu L., Heike Y., Gillespie G. Y., Siegal G. P., Mao X., Bett A. J., Huckle W. R. Paracrine expression of a native soluble vascular endothelial growth factor receptor inhibits tumor growth, metastasis, and mortality rate. Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8795–8800. doi: 10.1073/pnas.95.15.8795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gorski D. H., Beckett M. A., Jaskowiak N. T., Calvin D. P., Mauceri H. J., Salloum R. M., Seetharam S., Koons A., Hari D. M., Kufe D. W. Blockage of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation. Cancer Res. 1999 Jul 15;59(14):3374–3378. [PubMed] [Google Scholar]
  11. Gorski D. H., Mauceri H. J., Salloum R. M., Gately S., Hellman S., Beckett M. A., Sukhatme V. P., Soff G. A., Kufe D. W., Weichselbaum R. R. Potentiation of the antitumor effect of ionizing radiation by brief concomitant exposures to angiostatin. Cancer Res. 1998 Dec 15;58(24):5686–5689. [PubMed] [Google Scholar]
  12. Hanahan D., Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996 Aug 9;86(3):353–364. doi: 10.1016/s0092-8674(00)80108-7. [DOI] [PubMed] [Google Scholar]
  13. Joukov V., Kaipainen A., Jeltsch M., Pajusola K., Olofsson B., Kumar V., Eriksson U., Alitalo K. Vascular endothelial growth factors VEGF-B and VEGF-C. J Cell Physiol. 1997 Nov;173(2):211–215. doi: 10.1002/(SICI)1097-4652(199711)173:2<211::AID-JCP23>3.0.CO;2-H. [DOI] [PubMed] [Google Scholar]
  14. Kanai T., Konno H., Tanaka T., Baba M., Matsumoto K., Nakamura S., Yukita A., Asano M., Suzuki H., Baba S. Anti-tumor and anti-metastatic effects of human-vascular-endothelial-growth-factor-neutralizing antibody on human colon and gastric carcinoma xenotransplanted orthotopically into nude mice. Int J Cancer. 1998 Sep 11;77(6):933–936. doi: 10.1002/(sici)1097-0215(19980911)77:6<933::aid-ijc23>3.0.co;2-0. [DOI] [PubMed] [Google Scholar]
  15. Kim K. J., Li B., Winer J., Armanini M., Gillett N., Phillips H. S., Ferrara N. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature. 1993 Apr 29;362(6423):841–844. doi: 10.1038/362841a0. [DOI] [PubMed] [Google Scholar]
  16. Kozin S. V., Boucher Y., Hicklin D. J., Bohlen P., Jain R. K., Suit H. D. Vascular endothelial growth factor receptor-2-blocking antibody potentiates radiation-induced long-term control of human tumor xenografts. Cancer Res. 2001 Jan 1;61(1):39–44. [PubMed] [Google Scholar]
  17. Kroll J., Waltenberger J. The vascular endothelial growth factor receptor KDR activates multiple signal transduction pathways in porcine aortic endothelial cells. J Biol Chem. 1997 Dec 19;272(51):32521–32527. doi: 10.1074/jbc.272.51.32521. [DOI] [PubMed] [Google Scholar]
  18. Lund E. L., Bastholm L., Kristjansen P. E. Therapeutic synergy of TNP-470 and ionizing radiation: effects on tumor growth, vessel morphology, and angiogenesis in human glioblastoma multiforme xenografts. Clin Cancer Res. 2000 Mar;6(3):971–978. [PubMed] [Google Scholar]
  19. Mauceri H. J., Hanna N. N., Beckett M. A., Gorski D. H., Staba M. J., Stellato K. A., Bigelow K., Heimann R., Gately S., Dhanabal M. Combined effects of angiostatin and ionizing radiation in antitumour therapy. Nature. 1998 Jul 16;394(6690):287–291. doi: 10.1038/28412. [DOI] [PubMed] [Google Scholar]
  20. Olofsson B., Korpelainen E., Pepper M. S., Mandriota S. J., Aase K., Kumar V., Gunji Y., Jeltsch M. M., Shibuya M., Alitalo K. Vascular endothelial growth factor B (VEGF-B) binds to VEGF receptor-1 and regulates plasminogen activator activity in endothelial cells. Proc Natl Acad Sci U S A. 1998 Sep 29;95(20):11709–11714. doi: 10.1073/pnas.95.20.11709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Olofsson B., Pajusola K., Kaipainen A., von Euler G., Joukov V., Saksela O., Orpana A., Pettersson R. F., Alitalo K., Eriksson U. Vascular endothelial growth factor B, a novel growth factor for endothelial cells. Proc Natl Acad Sci U S A. 1996 Mar 19;93(6):2576–2581. doi: 10.1073/pnas.93.6.2576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Park J. E., Chen H. H., Winer J., Houck K. A., Ferrara N. Placenta growth factor. Potentiation of vascular endothelial growth factor bioactivity, in vitro and in vivo, and high affinity binding to Flt-1 but not to Flk-1/KDR. J Biol Chem. 1994 Oct 14;269(41):25646–25654. [PubMed] [Google Scholar]
  23. Shibuya M. Role of VEGF-flt receptor system in normal and tumor angiogenesis. Adv Cancer Res. 1995;67:281–316. doi: 10.1016/s0065-230x(08)60716-2. [DOI] [PubMed] [Google Scholar]
  24. Shibuya M., Yamaguchi S., Yamane A., Ikeda T., Tojo A., Matsushime H., Sato M. Nucleotide sequence and expression of a novel human receptor-type tyrosine kinase gene (flt) closely related to the fms family. Oncogene. 1990 Apr;5(4):519–524. [PubMed] [Google Scholar]
  25. Sun L. Q., Li Y. X., Guillou L., Coucke P. A. (E)-2'-deoxy-2'-(fluoromethylene) cytidine potentiates radioresponse of two human solid tumor xenografts. Cancer Res. 1998 Dec 1;58(23):5411–5417. [PubMed] [Google Scholar]
  26. Takahashi T., Shibuya M. The 230 kDa mature form of KDR/Flk-1 (VEGF receptor-2) activates the PLC-gamma pathway and partially induces mitotic signals in NIH3T3 fibroblasts. Oncogene. 1997 May 1;14(17):2079–2089. doi: 10.1038/sj.onc.1201047. [DOI] [PubMed] [Google Scholar]
  27. Teicher B. A., Holden S. A., Ara G., Korbut T., Menon K. Comparison of several antiangiogenic regimens alone and with cytotoxic therapies in the Lewis lung carcinoma. Cancer Chemother Pharmacol. 1996;38(2):169–177. doi: 10.1007/s002800050466. [DOI] [PubMed] [Google Scholar]
  28. Terman B. I., Dougher-Vermazen M., Carrion M. E., Dimitrov D., Armellino D. C., Gospodarowicz D., Böhlen P. Identification of the KDR tyrosine kinase as a receptor for vascular endothelial cell growth factor. Biochem Biophys Res Commun. 1992 Sep 30;187(3):1579–1586. doi: 10.1016/0006-291x(92)90483-2. [DOI] [PubMed] [Google Scholar]
  29. Wood J. M., Bold G., Buchdunger E., Cozens R., Ferrari S., Frei J., Hofmann F., Mestan J., Mett H., O'Reilly T. PTK787/ZK 222584, a novel and potent inhibitor of vascular endothelial growth factor receptor tyrosine kinases, impairs vascular endothelial growth factor-induced responses and tumor growth after oral administration. Cancer Res. 2000 Apr 15;60(8):2178–2189. [PubMed] [Google Scholar]
  30. Yamada Y., Nezu J., Shimane M., Hirata Y. Molecular cloning of a novel vascular endothelial growth factor, VEGF-D. Genomics. 1997 Jun 15;42(3):483–488. doi: 10.1006/geno.1997.4774. [DOI] [PubMed] [Google Scholar]
  31. Zaugg K., Rocha S., Resch H., Hegyi I., Oehler C., Glanzmann C., Fabbro D., Bodis S., Pruschy M. Differential p53-dependent mechanism of radiosensitization in vitro and in vivo by the protein kinase C-specific inhibitor PKC412. Cancer Res. 2001 Jan 15;61(2):732–738. [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES