Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 2001 Dec;85(12):2017–2021. doi: 10.1054/bjoc.2001.2171

Tyrphostin AG 1024 modulates radiosensitivity in human breast cancer cells

B Wen 1,#, E Deutsch 1,#, E Marangoni 1, V Frascona 1, L Maggiorella 1, B Abdulkarim 1, N Chavaudra 1, J Bourhis 1
PMCID: PMC2364012  PMID: 11747348

Abstract

Insulin-like growth factor-1 (IGF-1) plays an important growth-promoting effect by activating the PI3K/Akt signalling pathway, inhibiting apoptotic pathways and mediating mitogenic actions. Tyrphostin AG 1024, one selective inhibitor of IGF-1R, was used to evaluate effects on proliferation, radiosensitivity, and radiation-induced cell apoptosis in a human breast cancer cell line MCF-7. Exposure to Tyrphostin AG 1024 inhibited proliferation and induced apoptosis in a time-dependent manner, and the degree of growth inhibition for IC20 plus irradiation (4 Gy) was up to 50% compared to the control. Examination of Tyrphostin AG 1024 effects on radiation response demonstrated a marked enhancement in radiosensitivity and amplification of radiation-induced apoptosis. Western blot analysis indicated that Tyrphostin AG 1024-induced apoptosis was associated with a downregulation of expression of phospho-Akt1, increased expression of Bax, p53 and p21, and a decreased expression of bcl-2 expression, especially when combined with irradiation. To our knowledge, this is the first report showing that an IGF-1 inhibitor was able to markedly increase the response of tumour cells to ionizing radiation. These results suggest that Tyrphostin AG 1024 could be used as a potential therapeutic agent in combination with irradiation.   http://www.bjcancer.com © 2001 Cancer Research Campaign

Keywords: IGF-1R inhibitor, apoptosis, radiosensitivity, breast cancer

Full Text

The Full Text of this article is available as a PDF (72.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baserga R. The insulin-like growth factor I receptor: a key to tumor growth? Cancer Res. 1995 Jan 15;55(2):249–252. [PubMed] [Google Scholar]
  2. Blume-Jensen P., Hunter T. Oncogenic kinase signalling. Nature. 2001 May 17;411(6835):355–365. doi: 10.1038/35077225. [DOI] [PubMed] [Google Scholar]
  3. Buckbinder L., Talbott R., Velasco-Miguel S., Takenaka I., Faha B., Seizinger B. R., Kley N. Induction of the growth inhibitor IGF-binding protein 3 by p53. Nature. 1995 Oct 19;377(6550):646–649. doi: 10.1038/377646a0. [DOI] [PubMed] [Google Scholar]
  4. Christofori G., Naik P., Hanahan D. A second signal supplied by insulin-like growth factor II in oncogene-induced tumorigenesis. Nature. 1994 Jun 2;369(6479):414–418. doi: 10.1038/369414a0. [DOI] [PubMed] [Google Scholar]
  5. Cianfarani S., Rossi P. Neuroblastoma and insulin-like growth factor system. New insights and clinical perspectives. Eur J Pediatr. 1997 Apr;156(4):256–261. doi: 10.1007/s004310050595. [DOI] [PubMed] [Google Scholar]
  6. Coleman C. N., Stevenson M. A. Biologic basis for radiation oncology. Oncology (Williston Park) 1996 Mar;10(3):399–415. [PubMed] [Google Scholar]
  7. Dupont J., Karas M., LeRoith D. The potentiation of estrogen on insulin-like growth factor I action in MCF-7 human breast cancer cells includes cell cycle components. J Biol Chem. 2000 Nov 17;275(46):35893–35901. doi: 10.1074/jbc.M006741200. [DOI] [PubMed] [Google Scholar]
  8. Fowler J. F., Lindstrom M. J. Loss of local control with prolongation in radiotherapy. Int J Radiat Oncol Biol Phys. 1992;23(2):457–467. doi: 10.1016/0360-3016(92)90768-d. [DOI] [PubMed] [Google Scholar]
  9. Gazit A., Yaish P., Gilon C., Levitzki A. Tyrphostins I: synthesis and biological activity of protein tyrosine kinase inhibitors. J Med Chem. 1989 Oct;32(10):2344–2352. doi: 10.1021/jm00130a020. [DOI] [PubMed] [Google Scholar]
  10. Huang S. M., Bock J. M., Harari P. M. Epidermal growth factor receptor blockade with C225 modulates proliferation, apoptosis, and radiosensitivity in squamous cell carcinomas of the head and neck. Cancer Res. 1999 Apr 15;59(8):1935–1940. [PubMed] [Google Scholar]
  11. Jones J. I., Clemmons D. R. Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev. 1995 Feb;16(1):3–34. doi: 10.1210/edrv-16-1-3. [DOI] [PubMed] [Google Scholar]
  12. Kiess W., Koepf G., Christiansen H., Blum W. F. Human neuroblastoma cells use either insulin-like growth factor-I or insulin-like growth factor-II in an autocrine pathway via the IGF-I receptor: variability of IGF, IGF binding protein (IGFBP) and IGF receptor gene expression and IGF and IGFBP secretion in human neuroblastoma cells in relation to cellular proliferation. Regul Pept. 1997 Sep 26;72(1):19–29. doi: 10.1016/s0167-0115(97)01026-4. [DOI] [PubMed] [Google Scholar]
  13. Kim T. K. In vitro transcriptional activation of p21 promoter by p53. Biochem Biophys Res Commun. 1997 May 19;234(2):300–302. doi: 10.1006/bbrc.1997.6637. [DOI] [PubMed] [Google Scholar]
  14. LeRoith D., Werner H., Beitner-Johnson D., Roberts C. T., Jr Molecular and cellular aspects of the insulin-like growth factor I receptor. Endocr Rev. 1995 Apr;16(2):143–163. doi: 10.1210/edrv-16-2-143. [DOI] [PubMed] [Google Scholar]
  15. Lee A. V., Gooch J. L., Oesterreich S., Guler R. L., Yee D. Insulin-like growth factor I-induced degradation of insulin receptor substrate 1 is mediated by the 26S proteasome and blocked by phosphatidylinositol 3'-kinase inhibition. Mol Cell Biol. 2000 Mar;20(5):1489–1496. doi: 10.1128/mcb.20.5.1489-1496.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Levitzki A., Gazit A. Tyrosine kinase inhibition: an approach to drug development. Science. 1995 Mar 24;267(5205):1782–1788. doi: 10.1126/science.7892601. [DOI] [PubMed] [Google Scholar]
  17. Liu X., Turbyville T., Fritz A., Whitesell L. Inhibition of insulin-like growth factor I receptor expression in neuroblastoma cells induces the regression of established tumors in mice. Cancer Res. 1998 Dec 1;58(23):5432–5438. [PubMed] [Google Scholar]
  18. Lopaczynski W. Differential regulation of signaling pathways for insulin and insulin-like growth factor I. Acta Biochim Pol. 1999;46(1):51–60. [PubMed] [Google Scholar]
  19. Maestro R., Gloghini A., Doglioni C., Piccinin S., Vukosavljevic T., Gasparotto D., Carbone A., Boiocchi M. Human non-Hodgkin's lymphomas overexpress a wild-type form of p53 which is a functional transcriptional activator of the cyclin-dependent kinase inhibitor p21. Blood. 1997 Apr 1;89(7):2523–2528. [PubMed] [Google Scholar]
  20. Minshall C., Arkins S., Straza J., Conners J., Dantzer R., Freund G. G., Kelley K. W. IL-4 and insulin-like growth factor-I inhibit the decline in Bcl-2 and promote the survival of IL-3-deprived myeloid progenitors. J Immunol. 1997 Aug 1;159(3):1225–1232. [PubMed] [Google Scholar]
  21. Monno S., Newman M. V., Cook M., Lowe W. L., Jr Insulin-like growth factor I activates c-Jun N-terminal kinase in MCF-7 breast cancer cells. Endocrinology. 2000 Feb;141(2):544–550. doi: 10.1210/endo.141.2.7307. [DOI] [PubMed] [Google Scholar]
  22. Ohlsson C., Kley N., Werner H., LeRoith D. p53 regulates insulin-like growth factor-I (IGF-I) receptor expression and IGF-I-induced tyrosine phosphorylation in an osteosarcoma cell line: interaction between p53 and Sp1. Endocrinology. 1998 Mar;139(3):1101–1107. doi: 10.1210/endo.139.3.5832. [DOI] [PubMed] [Google Scholar]
  23. Párrizas M., LeRoith D. Insulin-like growth factor-1 inhibition of apoptosis is associated with increased expression of the bcl-xL gene product. Endocrinology. 1997 Mar;138(3):1355–1358. doi: 10.1210/endo.138.3.5103. [DOI] [PubMed] [Google Scholar]
  24. Rubin R., Baserga R. Insulin-like growth factor-I receptor. Its role in cell proliferation, apoptosis, and tumorigenicity. Lab Invest. 1995 Sep;73(3):311–331. [PubMed] [Google Scholar]
  25. Schmitz G. G., Walter T., Seibl R., Kessler C. Nonradioactive labeling of oligonucleotides in vitro with the hapten digoxigenin by tailing with terminal transferase. Anal Biochem. 1991 Jan;192(1):222–231. doi: 10.1016/0003-2697(91)90212-c. [DOI] [PubMed] [Google Scholar]
  26. Scotlandi K., Benini S., Nanni P., Lollini P. L., Nicoletti G., Landuzzi L., Serra M., Manara M. C., Picci P., Baldini N. Blockage of insulin-like growth factor-I receptor inhibits the growth of Ewing's sarcoma in athymic mice. Cancer Res. 1998 Sep 15;58(18):4127–4131. [PubMed] [Google Scholar]
  27. Shepherd P. R., Withers D. J., Siddle K. Phosphoinositide 3-kinase: the key switch mechanism in insulin signalling. Biochem J. 1998 Aug 1;333(Pt 3):471–490. doi: 10.1042/bj3330471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Shevelev A., Burfeind P., Schulze E., Rininsland F., Johnson T. R., Trojan J., Chernicky C. L., Hélène C., Ilan J., Ilan J. Potential triple helix-mediated inhibition of IGF-I gene expression significantly reduces tumorigenicity of glioblastoma in an animal model. Cancer Gene Ther. 1997 Mar-Apr;4(2):105–112. [PubMed] [Google Scholar]
  29. Sullivan K. A., Castle V. P., Hanash S. M., Feldman E. L. Insulin-like growth factor II in the pathogenesis of human neuroblastoma. Am J Pathol. 1995 Dec;147(6):1790–1798. [PMC free article] [PubMed] [Google Scholar]
  30. Takahashi K., Suzuki K. Association of insulin-like growth-factor-I-induced DNA synthesis with phosphorylation and nuclear exclusion of p53 in human breast cancer MCF-7 cells. Int J Cancer. 1993 Sep 30;55(3):453–458. doi: 10.1002/ijc.2910550322. [DOI] [PubMed] [Google Scholar]
  31. Trojan J., Johnson T. R., Rudin S. D., Blossey B. K., Kelley K. M., Shevelev A., Abdul-Karim F. W., Anthony D. D., Tykocinski M. L., Ilan J. Gene therapy of murine teratocarcinoma: separate functions for insulin-like growth factors I and II in immunogenicity and differentiation. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):6088–6092. doi: 10.1073/pnas.91.13.6088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wang L., Ma W., Markovich R., Lee W. L., Wang P. H. Insulin-like growth factor I modulates induction of apoptotic signaling in H9C2 cardiac muscle cells. Endocrinology. 1998 Mar;139(3):1354–1360. doi: 10.1210/endo.139.3.5801. [DOI] [PubMed] [Google Scholar]
  33. Webster N. J., Resnik J. L., Reichart D. B., Strauss B., Haas M., Seely B. L. Repression of the insulin receptor promoter by the tumor suppressor gene product p53: a possible mechanism for receptor overexpression in breast cancer. Cancer Res. 1996 Jun 15;56(12):2781–2788. [PubMed] [Google Scholar]
  34. Werner H., Karnieli E., Rauscher F. J., LeRoith D. Wild-type and mutant p53 differentially regulate transcription of the insulin-like growth factor I receptor gene. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8318–8323. doi: 10.1073/pnas.93.16.8318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Xiong Y., Hannon G. J., Zhang H., Casso D., Kobayashi R., Beach D. p21 is a universal inhibitor of cyclin kinases. Nature. 1993 Dec 16;366(6456):701–704. doi: 10.1038/366701a0. [DOI] [PubMed] [Google Scholar]
  36. Yuan Z. Q., Sun M., Feldman R. I., Wang G., Ma X., Jiang C., Coppola D., Nicosia S. V., Cheng J. Q. Frequent activation of AKT2 and induction of apoptosis by inhibition of phosphoinositide-3-OH kinase/Akt pathway in human ovarian cancer. Oncogene. 2000 May 4;19(19):2324–2330. doi: 10.1038/sj.onc.1203598. [DOI] [PubMed] [Google Scholar]
  37. Zhang L., Kashanchi F., Zhan Q., Zhan S., Brady J. N., Fornace A. J., Seth P., Helman L. J. Regulation of insulin-like growth factor II P3 promotor by p53: a potential mechanism for tumorigenesis. Cancer Res. 1996 Mar 15;56(6):1367–1373. [PubMed] [Google Scholar]
  38. Zhang L., Zhan Q., Zhan S., Kashanchi F., Fornace A. J., Jr, Seth P., Helman L. J. p53 regulates human insulin-like growth factor II gene expression through active P4 promoter in rhabdomyosarcoma cells. DNA Cell Biol. 1998 Feb;17(2):125–131. doi: 10.1089/dna.1998.17.125. [DOI] [PubMed] [Google Scholar]
  39. Zumkeller W., Schwab M. Insulin-like growth factor system in neuroblastoma tumorigenesis and apoptosis: potential diagnostic and therapeutic perspectives. Horm Metab Res. 1999 Feb-Mar;31(2-3):138–141. doi: 10.1055/s-2007-978711. [DOI] [PubMed] [Google Scholar]
  40. el-Deiry W. S., Tokino T., Velculescu V. E., Levy D. B., Parsons R., Trent J. M., Lin D., Mercer W. E., Kinzler K. W., Vogelstein B. WAF1, a potential mediator of p53 tumor suppression. Cell. 1993 Nov 19;75(4):817–825. doi: 10.1016/0092-8674(93)90500-p. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES