Abstract
The most frequent genetic alteration in transitional cell carcinoma of the urinary bladder (TCC) is loss of chromosome 9 which targets CDKN2A on 9p. The targets on 9q are not confirmed. Here, 81 advanced TCC specimens were investigated for loss of heterozygosity (LOH) and homozygous deletions (HD) on chromosome 9q using multiplex analysis of microsatellite markers. 41/81 tumours (51%) showed LOH on 9q, with LOH at all markers in 33 cases. Eight partial losses involved three regions in 9q12, 9q22.3, and 9q33– 9q34. No mutations were identified in the candidate tumour suppressor gene DBCCR1 in three tumours showing restricted LOH at 9q32-33. 22% of the specimens had HD at CDKN2A, but no HD was found on 9q. Two tumours had lost 9p only and five 9q only. 9q LOH was not related to tumour grade or stage and present or absent with equal frequency in recurrent TCC. LOH on 9q correlated with the extent of genome-wide hypomethylation (P < 0.0001) which extended into satellite sequences located in 9q12 juxtacentromeric heterochromatin. While the high frequency of chromosome 9q loss in TCC may reflect destabilization of the chromosome related to hypomethylation of repetitive DNA, the data are compatible with the existence of tumour suppressor genes on this chromosome arm. http://www.bjcancer.com © 2001 Cancer Research Campaign
Keywords: bladder cancer, chromosome instability, DNA methylation, LINE-1, tumour suppressor genes
Full Text
The Full Text of this article is available as a PDF (132.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akao T., Kakehi Y., Itoh N., Ozdemir E., Shimizu T., Tachibana A., Sasaki M. S., Yoshida O. A high prevalence of functional inactivation by methylation modification of p16INK4A/CDKN2/MTS1 gene in primary urothelial cancers. Jpn J Cancer Res. 1997 Nov;88(11):1078–1086. doi: 10.1111/j.1349-7006.1997.tb00332.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bender C. M., Pao M. M., Jones P. A. Inhibition of DNA methylation by 5-aza-2'-deoxycytidine suppresses the growth of human tumor cell lines. Cancer Res. 1998 Jan 1;58(1):95–101. [PubMed] [Google Scholar]
- Bruch J., Wöhr G., Hautmann R., Mattfeldt T., Brüderlein S., Möller P., Sauter S., Hameister H., Vogel W., Paiss T. Chromosomal changes during progression of transitional cell carcinoma of the bladder and delineation of the amplified interval on chromosome arm 8q. Genes Chromosomes Cancer. 1998 Oct;23(2):167–174. doi: 10.1002/(sici)1098-2264(199810)23:2<167::aid-gcc10>3.0.co;2-l. [DOI] [PubMed] [Google Scholar]
- Chow N. H., Cairns P., Eisenberger C. F., Schoenberg M. P., Taylor D. C., Epstein J. I., Sidransky D. Papillary urothelial hyperplasia is a clonal precursor to papillary transitional cell bladder cancer. Int J Cancer. 2000 Nov 20;89(6):514–518. [PubMed] [Google Scholar]
- Fadl-Elmula I., Gorunova L., Mandahl N., Elfving P., Lundgren R., Mitelman F., Heim S. Karyotypic characterization of urinary bladder transitional cell carcinomas. Genes Chromosomes Cancer. 2000 Nov;29(3):256–265. [PubMed] [Google Scholar]
- Florl A. R., Franke K. H., Niederacher D., Gerharz C. D., Seifert H. H., Schulz W. A. DNA methylation and the mechanisms of CDKN2A inactivation in transitional cell carcinoma of the urinary bladder. Lab Invest. 2000 Oct;80(10):1513–1522. doi: 10.1038/labinvest.3780161. [DOI] [PubMed] [Google Scholar]
- Florl A. R., Löwer R., Schmitz-Dräger B. J., Schulz W. A. DNA methylation and expression of LINE-1 and HERV-K provirus sequences in urothelial and renal cell carcinomas. Br J Cancer. 1999 Jul;80(9):1312–1321. doi: 10.1038/sj.bjc.6690524. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gonzalgo M. L., Hayashida T., Bender C. M., Pao M. M., Tsai Y. C., Gonzales F. A., Nguyen H. D., Nguyen T. T., Jones P. A. The role of DNA methylation in expression of the p19/p16 locus in human bladder cancer cell lines. Cancer Res. 1998 Mar 15;58(6):1245–1252. [PubMed] [Google Scholar]
- Grim J., D'Amico A., Frizelle S., Zhou J., Kratzke R. A., Curiel D. T. Adenovirus-mediated delivery of p16 to p16-deficient human bladder cancer cells confers chemoresistance to cisplatin and paclitaxel. Clin Cancer Res. 1997 Dec;3(12 Pt 1):2415–2423. [PubMed] [Google Scholar]
- Habuchi T., Devlin J., Elder P. A., Knowles M. A. Detailed deletion mapping of chromosome 9q in bladder cancer: evidence for two tumour suppressor loci. Oncogene. 1995 Oct 19;11(8):1671–1674. [PubMed] [Google Scholar]
- Habuchi T., Luscombe M., Elder P. A., Knowles M. A. Structure and methylation-based silencing of a gene (DBCCR1) within a candidate bladder cancer tumor suppressor region at 9q32-q33. Genomics. 1998 Mar 15;48(3):277–288. doi: 10.1006/geno.1997.5165. [DOI] [PubMed] [Google Scholar]
- Habuchi T., Yoshida O., Knowles M. A. A novel candidate tumour suppressor locus at 9q32-33 in bladder cancer: localization of the candidate region within a single 840 kb YAC. Hum Mol Genet. 1997 Jun;6(6):913–919. doi: 10.1093/hmg/6.6.913. [DOI] [PubMed] [Google Scholar]
- Hornigold N., Devlin J., Davies A. M., Aveyard J. S., Habuchi T., Knowles M. A. Mutation of the 9q34 gene TSC1 in sporadic bladder cancer. Oncogene. 1999 Apr 22;18(16):2657–2661. doi: 10.1038/sj.onc.1202854. [DOI] [PubMed] [Google Scholar]
- Jürgens B., Schmitz-Dräger B. J., Schulz W. A. Hypomethylation of L1 LINE sequences prevailing in human urothelial carcinoma. Cancer Res. 1996 Dec 15;56(24):5698–5703. [PubMed] [Google Scholar]
- Kai M., Arakawa H., Sugimoto Y., Murata Y., Ogawa M., Nakamura Y. Infrequent somatic mutation of the MTS1 gene in primary bladder carcinomas. Jpn J Cancer Res. 1995 Mar;86(3):249–251. doi: 10.1111/j.1349-7006.1995.tb03047.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kallioniemi A., Kallioniemi O. P., Citro G., Sauter G., DeVries S., Kerschmann R., Caroll P., Waldman F. Identification of gains and losses of DNA sequences in primary bladder cancer by comparative genomic hybridization. Genes Chromosomes Cancer. 1995 Mar;12(3):213–219. doi: 10.1002/gcc.2870120309. [DOI] [PubMed] [Google Scholar]
- Knowles M. A., Elder P. A., Williamson M., Cairns J. P., Shaw M. E., Law M. G. Allelotype of human bladder cancer. Cancer Res. 1994 Jan 15;54(2):531–538. [PubMed] [Google Scholar]
- Knowles M. A. The genetics of transitional cell carcinoma: progress and potential clinical application. BJU Int. 1999 Sep;84(4):412–427. doi: 10.1046/j.1464-410x.1999.00217.x. [DOI] [PubMed] [Google Scholar]
- Kuklin A., Munson K., Gjerde D., Haefele R., Taylor P. Detection of single-nucleotide polymorphisms with the WAVE DNA fragment analysis system. Genet Test. 1997;1(3):201–206. doi: 10.1089/gte.1997.1.201. [DOI] [PubMed] [Google Scholar]
- Lindblom A. Different mechanisms in the tumorigenesis of proximal and distal colon cancers. Curr Opin Oncol. 2001 Jan;13(1):63–69. doi: 10.1097/00001622-200101000-00013. [DOI] [PubMed] [Google Scholar]
- McGarvey T. W., Maruta Y., Tomaszewski J. E., Linnenbach A. J., Malkowicz S. B. PTCH gene mutations in invasive transitional cell carcinoma of the bladder. Oncogene. 1998 Sep 3;17(9):1167–1172. doi: 10.1038/sj.onc.1202045. [DOI] [PubMed] [Google Scholar]
- McGarvey TW, Tait E, Tomaszewski JE, Malkowicz SB. Expression of Transforming Growth Factor-beta Receptors and Related Cell-Cycle Components in Transitional-Cell Carcinoma of the Bladder. Mol Urol. 1999;3(4):371–380. [PubMed] [Google Scholar]
- Nishiyama H., Takahashi T., Kakehi Y., Habuchi T., Knowles M. A. Homozygous deletion at the 9q32-33 candidate tumor suppressor locus in primary human bladder cancer. Genes Chromosomes Cancer. 1999 Oct;26(2):171–175. [PubMed] [Google Scholar]
- Ohgaki K., Minobe K., Kurose K., Iida A., Habuchi T., Ogawa O., Kubota Y., Akimoto M., Emi M. Two target regions of allelic loss on chromosome 9 in urinary-bladder cancer. Jpn J Cancer Res. 1999 Sep;90(9):957–964. doi: 10.1111/j.1349-7006.1999.tb00841.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Orlow I., LaRue H., Osman I., Lacombe L., Moore L., Rabbani F., Meyer F., Fradet Y., Cordon-Cardo C. Deletions of the INK4A gene in superficial bladder tumors. Association with recurrence. Am J Pathol. 1999 Jul;155(1):105–113. doi: 10.1016/S0002-9440(10)65105-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Orntoft T. F., Wolf H. Molecular alterations in bladder cancer. Urol Res. 1998;26(4):223–233. doi: 10.1007/s002400050050. [DOI] [PubMed] [Google Scholar]
- Packenham J. P., Taylor J. A., Anna C. H., White C. M., Devereux T. R. Homozygous deletions but no sequence mutations in coding regions of p15 or p16 in human primary bladder tumors. Mol Carcinog. 1995 Nov;14(3):147–151. doi: 10.1002/mc.2940140303. [DOI] [PubMed] [Google Scholar]
- Qu G. Z., Grundy P. E., Narayan A., Ehrlich M. Frequent hypomethylation in Wilms tumors of pericentromeric DNA in chromosomes 1 and 16. Cancer Genet Cytogenet. 1999 Feb;109(1):34–39. doi: 10.1016/s0165-4608(98)00143-5. [DOI] [PubMed] [Google Scholar]
- Qu G., Dubeau L., Narayan A., Yu M. C., Ehrlich M. Satellite DNA hypomethylation vs. overall genomic hypomethylation in ovarian epithelial tumors of different malignant potential. Mutat Res. 1999 Jan 25;423(1-2):91–101. doi: 10.1016/s0027-5107(98)00229-2. [DOI] [PubMed] [Google Scholar]
- Quelle D. E., Zindy F., Ashmun R. A., Sherr C. J. Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell. 1995 Dec 15;83(6):993–1000. doi: 10.1016/0092-8674(95)90214-7. [DOI] [PubMed] [Google Scholar]
- Richter J., Wagner U., Schraml P., Maurer R., Alund G., Knönagel H., Moch H., Mihatsch M. J., Gasser T. C., Sauter G. Chromosomal imbalances are associated with a high risk of progression in early invasive (pT1) urinary bladder cancer. Cancer Res. 1999 Nov 15;59(22):5687–5691. [PubMed] [Google Scholar]
- Rocchi M., Archidiacono N., Ward D. C., Baldini A. A human chromosome 9-specific alphoid DNA repeat spatially resolvable from satellite 3 DNA by fluorescent in situ hybridization. Genomics. 1991 Mar;9(3):517–523. doi: 10.1016/0888-7543(91)90419-f. [DOI] [PubMed] [Google Scholar]
- Saito Y., Kanai Y., Sakamoto M., Saito H., Ishii H., Hirohashi S. Expression of mRNA for DNA methyltransferases and methyl-CpG-binding proteins and DNA methylation status on CpG islands and pericentromeric satellite regions during human hepatocarcinogenesis. Hepatology. 2001 Mar;33(3):561–568. doi: 10.1053/jhep.2001.22507. [DOI] [PubMed] [Google Scholar]
- Simoneau A. R., Spruck C. H., 3rd, Gonzalez-Zulueta M., Gonzalgo M. L., Chan M. F., Tsai Y. C., Dean M., Steven K., Horn T., Jones P. A. Evidence for two tumor suppressor loci associated with proximal chromosome 9p to q and distal chromosome 9q in bladder cancer and the initial screening for GAS1 and PTC mutations. Cancer Res. 1996 Nov 1;56(21):5039–5043. [PubMed] [Google Scholar]
- Simoneau M., LaRue H., Aboulkassim T. O., Meyer F., Moore L., Fradet Y. Chromosome 9 deletions and recurrence of superficial bladder cancer: identification of four regions of prognostic interest. Oncogene. 2000 Dec 14;19(54):6317–6323. doi: 10.1038/sj.onc.1204022. [DOI] [PubMed] [Google Scholar]
- Tokunaga H., Lee D. H., Kim I. Y., Wheeler T. M., Lerner S. P. Decreased expression of transforming growth factor beta receptor type I is associated with poor prognosis in bladder transitional cell carcinoma patients. Clin Cancer Res. 1999 Sep;5(9):2520–2525. [PubMed] [Google Scholar]
- Tuck-Muller C. M., Narayan A., Tsien F., Smeets D. F., Sawyer J., Fiala E. S., Sohn O. S., Ehrlich M. DNA hypomethylation and unusual chromosome instability in cell lines from ICF syndrome patients. Cytogenet Cell Genet. 2000;89(1-2):121–128. doi: 10.1159/000015590. [DOI] [PubMed] [Google Scholar]
- Van Tilborg A. A., Hekman A. C., Vissers K. J., van der Kwast T. H., Zwarthoff E. C. Loss of heterozygosity on chromosome 9 and loss of chromosome 9 copy number are separate events in the pathogenesis of transitional cell carcinoma of the bladder. Int J Cancer. 1998 Jan 5;75(1):9–14. doi: 10.1002/(sici)1097-0215(19980105)75:1<9::aid-ijc2>3.0.co;2-1. [DOI] [PubMed] [Google Scholar]
- Williamson M. P., Elder P. A., Shaw M. E., Devlin J., Knowles M. A. p16 (CDKN2) is a major deletion target at 9p21 in bladder cancer. Hum Mol Genet. 1995 Sep;4(9):1569–1577. doi: 10.1093/hmg/4.9.1569. [DOI] [PubMed] [Google Scholar]
- Xu G. L., Bestor T. H., Bourc'his D., Hsieh C. L., Tommerup N., Bugge M., Hulten M., Qu X., Russo J. J., Viegas-Péquignot E. Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature. 1999 Nov 11;402(6758):187–191. doi: 10.1038/46052. [DOI] [PubMed] [Google Scholar]
- Zhao J., Richter J., Wagner U., Roth B., Schraml P., Zellweger T., Ackermann D., Schmid U., Moch H., Mihatsch M. J. Chromosomal imbalances in noninvasive papillary bladder neoplasms (pTa). Cancer Res. 1999 Sep 15;59(18):4658–4661. [PubMed] [Google Scholar]
- van Tilborg A. A., Groenfeld L. E., van der Kwast T. H., Zwarthoff E. C. Evidence for two candidate tumour suppressor loci on chromosome 9q in transitional cell carcinoma (TCC) of the bladder but no homozygous deletions in bladder tumour cell lines. Br J Cancer. 1999 May;80(3-4):489–494. doi: 10.1038/sj.bjc.6690383. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Tilborg A. A., de Vries A., de Bont M., Groenfeld L. E., van der Kwast T. H., Zwarthoff E. C. Molecular evolution of multiple recurrent cancers of the bladder. Hum Mol Genet. 2000 Dec 12;9(20):2973–2980. doi: 10.1093/hmg/9.20.2973. [DOI] [PubMed] [Google Scholar]