Abstract
Tumour-derived factors suppress differentiation and function of in vitro generated DC. Here, we investigate the effect of two melanoma clones differing in their invasive and metastatic properties on the generation and/or functional maturation of human epidermal LC. LC were generated from CD34+ cord blood progenitors under GM-CSF/TNF-α/TGF-β1. CD34+ cells were co-cultured with or without melanoma cells using Transwell dishes. After 11 days of co-culture, CD34+-derived cells display a non-adherent undifferentiated morphology, a high level of monocytic CD14 marker, a down-regulated expression of LC markers (CD1a, E-cadherin) and DC markers (CD40, CD80, CD54, CD58, CD83, CD86, HLA-DR, HLA-class I). These cells were less potent than control LC in inducing allogeneic T cell proliferation. The generation of the CD14+ population was correlated with a decrease in the CD1a+ population, without any statistical differences between the two clones. Melanoma cells diverted the differentiation of CD34+ cells towards a dominant CD14+ population only if the progenitors were in an early growth phase. IL-10, TGF-β1 and VEGF were not responsible for these effects, as assessed by using blocking antibodies. By contrast, co-culture of fresh epidermal LC with melanoma cells did not affect their phenotype and function. Our data demonstrate that melanoma cells inhibit the earliest steps of LC differentiation, but failed to affect the functional maturation of epidermal LC. This suggests that melanoma cells participate in their own escape from immunosurveillance by preventing LC generation in the local cutaneous microenvironment. © 2001 Cancer Research Campaign http://www.bjcancer.com
Keywords: human melanoma, Langerhans cell, differentiation, maturation
Full Text
The Full Text of this article is available as a PDF (137.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Banchereau J., Steinman R. M. Dendritic cells and the control of immunity. Nature. 1998 Mar 19;392(6673):245–252. doi: 10.1038/32588. [DOI] [PubMed] [Google Scholar]
- Bechetoille N., Haftek M., Staquet M. J., Cochran A. J., Schmitt D., Berthier-Vergnes O. Penetration of human metastatic melanoma cells through an authentic dermal-epidermal junction is associated with dissolution of native collagen types IV and VII. Melanoma Res. 2000 Oct;10(5):427–434. doi: 10.1097/00008390-200010000-00004. [DOI] [PubMed] [Google Scholar]
- Berthier-Vergnes O., Zebda N., Bailly M., Bailly C., Doré J. F., Thomas L., Cochran A. J. Expression of peanut agglutinin-binding glycoconjugates in primary melanomas with high risk of metastases. Lancet. 1993 May 15;341(8855):1292–1292. doi: 10.1016/0140-6736(93)91205-z. [DOI] [PubMed] [Google Scholar]
- Caux C., Dezutter-Dambuyant C., Schmitt D., Banchereau J. GM-CSF and TNF-alpha cooperate in the generation of dendritic Langerhans cells. Nature. 1992 Nov 19;360(6401):258–261. doi: 10.1038/360258a0. [DOI] [PubMed] [Google Scholar]
- Caux C., Massacrier C., Dubois B., Valladeau J., Dezutter-Dambuyant C., Durand I., Schmitt D., Saeland S. Respective involvement of TGF-beta and IL-4 in the development of Langerhans cells and non-Langerhans dendritic cells from CD34+ progenitors. J Leukoc Biol. 1999 Nov;66(5):781–791. doi: 10.1002/jlb.66.5.781. [DOI] [PubMed] [Google Scholar]
- Caux C., Massacrier C., Vanbervliet B., Barthelemy C., Liu Y. J., Banchereau J. Interleukin 10 inhibits T cell alloreaction induced by human dendritic cells. Int Immunol. 1994 Aug;6(8):1177–1185. doi: 10.1093/intimm/6.8.1177. [DOI] [PubMed] [Google Scholar]
- Caux C., Vanbervliet B., Massacrier C., Dezutter-Dambuyant C., de Saint-Vis B., Jacquet C., Yoneda K., Imamura S., Schmitt D., Banchereau J. CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to GM-CSF+TNF alpha. J Exp Med. 1996 Aug 1;184(2):695–706. doi: 10.1084/jem.184.2.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Enk A. H., Jonuleit H., Saloga J., Knop J. Dendritic cells as mediators of tumor-induced tolerance in metastatic melanoma. Int J Cancer. 1997 Nov 4;73(3):309–316. doi: 10.1002/(sici)1097-0215(19971104)73:3<309::aid-ijc1>3.0.co;2-3. [DOI] [PubMed] [Google Scholar]
- Esche C., Lokshin A., Shurin G. V., Gastman B. R., Rabinowich H., Watkins S. C., Lotze M. T., Shurin M. R. Tumor's other immune targets: dendritic cells. J Leukoc Biol. 1999 Aug;66(2):336–344. doi: 10.1002/jlb.66.2.336. [DOI] [PubMed] [Google Scholar]
- Gabrilovich D. I., Chen H. L., Girgis K. R., Cunningham H. T., Meny G. M., Nadaf S., Kavanaugh D., Carbone D. P. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med. 1996 Oct;2(10):1096–1103. doi: 10.1038/nm1096-1096. [DOI] [PubMed] [Google Scholar]
- Guerrin M., Moukadiri H., Chollet P., Moro F., Dutt K., Malecaze F., Plouët J. Vasculotropin/vascular endothelial growth factor is an autocrine growth factor for human retinal pigment epithelial cells cultured in vitro. J Cell Physiol. 1995 Aug;164(2):385–394. doi: 10.1002/jcp.1041640219. [DOI] [PubMed] [Google Scholar]
- Hart D. N. Dendritic cells: unique leukocyte populations which control the primary immune response. Blood. 1997 Nov 1;90(9):3245–3287. [PubMed] [Google Scholar]
- Ishida T., Oyama T., Carbone D. P., Gabrilovich D. I. Defective function of Langerhans cells in tumor-bearing animals is the result of defective maturation from hemopoietic progenitors. J Immunol. 1998 Nov 1;161(9):4842–4851. [PubMed] [Google Scholar]
- Jaksits S., Kriehuber E., Charbonnier A. S., Rappersberger K., Stingl G., Maurer D. CD34+ cell-derived CD14+ precursor cells develop into Langerhans cells in a TGF-beta 1-dependent manner. J Immunol. 1999 Nov 1;163(9):4869–4877. [PubMed] [Google Scholar]
- Katsenelson N. S., Shurin G. V., Bykovskaia S. N., Shogan J., Shurin M. R. Human small cell lung carcinoma and carcinoid tumor regulate dendritic cell maturation and function. Mod Pathol. 2001 Jan;14(1):40–45. doi: 10.1038/modpathol.3880254. [DOI] [PubMed] [Google Scholar]
- Menetrier-Caux C., Montmain G., Dieu M. C., Bain C., Favrot M. C., Caux C., Blay J. Y. Inhibition of the differentiation of dendritic cells from CD34(+) progenitors by tumor cells: role of interleukin-6 and macrophage colony-stimulating factor. Blood. 1998 Dec 15;92(12):4778–4791. [PubMed] [Google Scholar]
- Pirtskhalaishvili G., Shurin G. V., Esche C., Cai Q., Salup R. R., Bykovskaia S. N., Lotze M. T., Shurin M. R. Cytokine-mediated protection of human dendritic cells from prostate cancer-induced apoptosis is regulated by the Bcl-2 family of proteins. Br J Cancer. 2000 Aug;83(4):506–513. doi: 10.1054/bjoc.2000.1289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Péguet-Navarro J., Dalbiez-Gauthier C., Rattis F. M., Van Kooten C., Banchereau J., Schmitt D. Functional expression of CD40 antigen on human epidermal Langerhans cells. J Immunol. 1995 Nov 1;155(9):4241–4247. [PubMed] [Google Scholar]
- Péguet-Navarro J., Moulon C., Caux C., Dalbiez-Gauthier C., Banchereau J., Schmitt D. Interleukin-10 inhibits the primary allogeneic T cell response to human epidermal Langerhans cells. Eur J Immunol. 1994 Apr;24(4):884–891. doi: 10.1002/eji.1830240416. [DOI] [PubMed] [Google Scholar]
- Reid C. D., Stackpoole A., Meager A., Tikerpae J. Interactions of tumor necrosis factor with granulocyte-macrophage colony-stimulating factor and other cytokines in the regulation of dendritic cell growth in vitro from early bipotent CD34+ progenitors in human bone marrow. J Immunol. 1992 Oct 15;149(8):2681–2688. [PubMed] [Google Scholar]
- Riedl E., Strobl H., Majdic O., Knapp W. TGF-beta 1 promotes in vitro generation of dendritic cells by protecting progenitor cells from apoptosis. J Immunol. 1997 Feb 15;158(4):1591–1597. [PubMed] [Google Scholar]
- Shurin G. V., Shurin M. R., Bykovskaia S., Shogan J., Lotze M. T., Barksdale E. M., Jr Neuroblastoma-derived gangliosides inhibit dendritic cell generation and function. Cancer Res. 2001 Jan 1;61(1):363–369. [PubMed] [Google Scholar]
- Steinbrink K., Wölfl M., Jonuleit H., Knop J., Enk A. H. Induction of tolerance by IL-10-treated dendritic cells. J Immunol. 1997 Nov 15;159(10):4772–4780. [PubMed] [Google Scholar]
- Stene M. A., Babajanians M., Bhuta S., Cochran A. J. Quantitative alterations in cutaneous Langerhans cells during the evolution of malignant melanoma of the skin. J Invest Dermatol. 1988 Aug;91(2):125–128. doi: 10.1111/1523-1747.ep12464142. [DOI] [PubMed] [Google Scholar]
- Strobl H., Riedl E., Scheinecker C., Bello-Fernandez C., Pickl W. F., Rappersberger K., Majdic O., Knapp W. TGF-beta 1 promotes in vitro development of dendritic cells from CD34+ hemopoietic progenitors. J Immunol. 1996 Aug 15;157(4):1499–1507. [PubMed] [Google Scholar]
- Strunk D., Rappersberger K., Egger C., Strobl H., Krömer E., Elbe A., Maurer D., Stingl G. Generation of human dendritic cells/Langerhans cells from circulating CD34+ hematopoietic progenitor cells. Blood. 1996 Feb 15;87(4):1292–1302. [PubMed] [Google Scholar]
- Toriyama K., Wen D. R., Paul E., Cochran A. J. Variations in the distribution, frequency, and phenotype of Langerhans cells during the evolution of malignant melanoma of the skin. J Invest Dermatol. 1993 Mar;100(3):269S–273S. doi: 10.1111/1523-1747.ep12470135. [DOI] [PubMed] [Google Scholar]
- Trompezinski S., Pernet I., Mayoux C., Schmitt D., Viac J. Transforming growth factor-beta1 and ultraviolet A1 radiation increase production of vascular endothelial growth factor but not endothelin-1 in human dermal fibroblasts. Br J Dermatol. 2000 Sep;143(3):539–545. doi: 10.1111/j.1365-2133.2000.03707.x. [DOI] [PubMed] [Google Scholar]
- Zebda N., Bailly M., Brown S., Doré J. F., Berthier-Vergnes O. Expression of PNA-binding sites on specific glycoproteins by human melanoma cells is associated with a high metastatic potential. J Cell Biochem. 1994 Feb;54(2):161–173. doi: 10.1002/jcb.240540205. [DOI] [PubMed] [Google Scholar]
- Zebda N., Pedron S., Rebbaa A., Portoukalian J., Berthier-Vergnes O. Deficiency of ganglioside biosynthesis in metastatic human melanoma cells: relevance of CMP-NeuAc:LacCer alpha 2-3 sialyltransferase (GM3 synthase). FEBS Lett. 1995 Apr 3;362(2):161–164. doi: 10.1016/0014-5793(95)00234-z. [DOI] [PubMed] [Google Scholar]
