Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 2001 Dec;85(12):1998–2003. doi: 10.1054/bjoc.2001.2184

Selective modulation of P-glycoprotein-mediated drug resistance

M Bebawy 1, M B Morris 1, B D Roufogalis 1
PMCID: PMC2364021  PMID: 11747345

Abstract

Multidrug resistance associated with the overexpression of the multidrug transporter P-glycoprotein is a serious impediment to successful cancer treatment. We found that verapamil reversed resistance of CEM/VLB 100 cells to vinblastine and fluorescein-colchicine, but not to colchicine. Chlorpromazine reversed resistance to vinblastine but not to fluorescein-colchicine, and it increased resistance to colchicine. Initial influx rates of fluorescein-colchicine were similar in resistant and parental cells, whereas vinblastine uptake was about 10-fold lower in the resistant cells. These results provide indirect evidence that fluorescein-colchicine is transported from the inner leaflet of the membrane and vinblastine from the outer membrane leaflet. Verapamil inhibited fluorescein-colchicine transport in inside-out vesicles made from resistant cells, whilst chlorpromazine was found to activate the transport of fluorescein-colchicine. The chlorpromazine-induced activation of fluorescein-colchicine transport was temperature-dependent and may reflect its interaction with phospholipids localised in the same bilayer leaflet. Conversely, chlorpromazine localisation in this leaflet may be responsible for its allosteric inhibition of vinblastine transport from the opposing membrane leaflet. The proposed relationship between the selectivity of modulation of P-glycoprotein and the membrane localisation of the cytotoxic drug substrates and modulators may have important implications in the rational design of regimes for the circumvention of multidrug resistance clinically. © 2001 Cancer Research Campaign http://www.bjcancer.com

Keywords: chlorpromazine, colchicine, fluorescein-colchicine, multidrug resistance, P-glycoprotein, vinblastine

Full Text

The Full Text of this article is available as a PDF (125.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ayesh S., Shao Y. M., Stein W. D. Co-operative, competitive and non-competitive interactions between modulators of P-glycoprotein. Biochim Biophys Acta. 1996 May 24;1316(1):8–18. doi: 10.1016/0925-4439(96)00008-7. [DOI] [PubMed] [Google Scholar]
  2. Bebawy M., Morris M. B., Roufogalis B. D. A continuous fluorescence assay for the study of P-glycoprotein-mediated drug efflux using inside-out membrane vesicles. Anal Biochem. 1999 Mar 15;268(2):270–277. doi: 10.1006/abio.1998.3087. [DOI] [PubMed] [Google Scholar]
  3. Beck W. T., Mueller T. J., Tanzer L. R. Altered surface membrane glycoproteins in Vinca alkaloid-resistant human leukemic lymphoblasts. Cancer Res. 1979 Jun;39(6 Pt 1):2070–2076. [PubMed] [Google Scholar]
  4. Callaghan R., Stafford A., Epand R. M. Increased accumulation of drugs in a multidrug resistant cell line by alteration of membrane biophysical properties. Biochim Biophys Acta. 1993 Feb 17;1175(3):277–282. doi: 10.1016/0167-4889(93)90217-d. [DOI] [PubMed] [Google Scholar]
  5. FOLEY G. E., LAZARUS H., FARBER S., UZMAN B. G., BOONE B. A., MCCARTHY R. E. CONTINUOUS CULTURE OF HUMAN LYMPHOBLASTS FROM PERIPHERAL BLOOD OF A CHILD WITH ACUTE LEUKEMIA. Cancer. 1965 Apr;18:522–529. doi: 10.1002/1097-0142(196504)18:4<522::aid-cncr2820180418>3.0.co;2-j. [DOI] [PubMed] [Google Scholar]
  6. Ford J. M. Experimental reversal of P-glycoprotein-mediated multidrug resistance by pharmacological chemosensitisers. Eur J Cancer. 1996 Jun;32A(6):991–1001. doi: 10.1016/0959-8049(96)00047-0. [DOI] [PubMed] [Google Scholar]
  7. Giraud F., Claret M., Bruckdorfer K. R., Chailley B. The effects of membrane lipid order and cholesterol on the internal and external cationic sites of the Na+-K+ pump in erythrocytes. Biochim Biophys Acta. 1981 Oct 2;647(2):249–258. doi: 10.1016/0005-2736(81)90253-4. [DOI] [PubMed] [Google Scholar]
  8. Meibohm B., Derendorf H. Basic concepts of pharmacokinetic/pharmacodynamic (PK/PD) modelling. Int J Clin Pharmacol Ther. 1997 Oct;35(10):401–413. [PubMed] [Google Scholar]
  9. Regev R., Assaraf Y. G., Eytan G. D. Membrane fluidization by ether, other anesthetics, and certain agents abolishes P-glycoprotein ATPase activity and modulates efflux from multidrug-resistant cells. Eur J Biochem. 1999 Jan;259(1-2):18–24. doi: 10.1046/j.1432-1327.1999.00037.x. [DOI] [PubMed] [Google Scholar]
  10. Romsicki Y., Sharom F. J. The membrane lipid environment modulates drug interactions with the P-glycoprotein multidrug transporter. Biochemistry. 1999 May 25;38(21):6887–6896. doi: 10.1021/bi990064q. [DOI] [PubMed] [Google Scholar]
  11. Saeki T., Shimabuku A. M., Azuma Y., Shibano Y., Komano T., Ueda K. Expression of human P-glycoprotein in yeast cells--effects of membrane component sterols on the activity of P-glycoprotein. Agric Biol Chem. 1991 Jul;55(7):1859–1865. [PubMed] [Google Scholar]
  12. Saeki T., Shimabuku A. M., Ueda K., Komano T. Specific drug binding by purified lipid-reconstituted P-glycoprotein: dependence on the lipid composition. Biochim Biophys Acta. 1992 Jun 11;1107(1):105–110. doi: 10.1016/0005-2736(92)90334-i. [DOI] [PubMed] [Google Scholar]
  13. Sharom F. J. The P-glycoprotein multidrug transporter: interactions with membrane lipids, and their modulation of activity. Biochem Soc Trans. 1997 Aug;25(3):1088–1096. doi: 10.1042/bst0251088. [DOI] [PubMed] [Google Scholar]
  14. Sheetz M. P., Singer S. J. Equilibrium and kinetic effects of drugs on the shapes of human erythrocytes. J Cell Biol. 1976 Jul;70(1):247–251. doi: 10.1083/jcb.70.1.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sinicrope F. A., Dudeja P. K., Bissonnette B. M., Safa A. R., Brasitus T. A. Modulation of P-glycoprotein-mediated drug transport by alterations in lipid fluidity of rat liver canalicular membrane vesicles. J Biol Chem. 1992 Dec 15;267(35):24995–25002. [PubMed] [Google Scholar]
  16. Sirotnak F. M., Yang C. H., Mines L. S., Oribé E., Biedler J. L. Markedly altered membrane transport and intracellular binding of vincristine in multidrug-resistant Chinese hamster cells selected for resistance to vinca alkaloids. J Cell Physiol. 1986 Feb;126(2):266–274. doi: 10.1002/jcp.1041260217. [DOI] [PubMed] [Google Scholar]
  17. Stein W. D. Kinetics of the multidrug transporter (P-glycoprotein) and its reversal. Physiol Rev. 1997 Apr;77(2):545–590. doi: 10.1152/physrev.1997.77.2.545. [DOI] [PubMed] [Google Scholar]
  18. Syed S. K., Christopherson R. I., Roufogalis B. D. Chlorpromazine transport in membrane vesicles from multidrug resistant CCRF-CEM cells. Biochem Mol Biol Int. 1996 Jul;39(4):687–696. doi: 10.1080/15216549600201761. [DOI] [PubMed] [Google Scholar]
  19. Syed S. K., Christopherson R. I., Roufogalis B. D. Reversal of vinblastine transport by chlorpromazine in membrane vesicles from multidrug-resistant human CCRF-CEM leukaemia cells. Br J Cancer. 1998 Aug;78(3):321–327. doi: 10.1038/bjc.1998.493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tenforde T. S., Yee J. P., Mel H. C. Electrophoretic detection of reversible chlorpromazine . HCl binding at the human erythrocyte surface. Biochim Biophys Acta. 1978 Aug 4;511(2):152–162. doi: 10.1016/0005-2736(78)90310-3. [DOI] [PubMed] [Google Scholar]
  21. Wadkins R. M., Houghton P. J. The role of drug-lipid interactions in the biological activity of modulators of multi-drug resistance. Biochim Biophys Acta. 1993 Dec 12;1153(2):225–236. doi: 10.1016/0005-2736(93)90409-s. [DOI] [PubMed] [Google Scholar]
  22. Zachowski A., Durand P. Biphasic nature of the binding of cationic amphipaths with artificial and biological membranes. Biochim Biophys Acta. 1988 Jan 22;937(2):411–416. doi: 10.1016/0005-2736(88)90263-5. [DOI] [PubMed] [Google Scholar]
  23. Zamora J. M., Pearce H. L., Beck W. T. Physical-chemical properties shared by compounds that modulate multidrug resistance in human leukemic cells. Mol Pharmacol. 1988 Apr;33(4):454–462. [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES