Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 2001 Dec;85(12):2004–2009. doi: 10.1054/bjoc.2001.2186

Bioavailability and dose-dependent anti-tumour effects of 9-cis retinoic acid on human neuroblastoma xenografts in rat

F Ponthan 1, P Kogner 1, P Bjellerup 2, L Klevenvall 1, M Hassan 3
PMCID: PMC2364024  PMID: 11747346

Abstract

Neuroblastoma, the most common extracranial solid tumour in children, may undergo spontaneous differentiation or regression, but the majority of metastatic neuroblastomas have poor prognosis despite intensive treatment. Retinoic acid regulates growth and differentiation of neuroblastoma cells in vitro, and has shown activity against human neuroblastomas in vivo. The retinoid 9-cis RA has been reported to induce apoptosis in vitro, and to inhibit the growth of human neuroblastoma xenografts in vivo. However, at given dosage, the treatment with 9-cis RA caused significant toxic side effects. In the present study we investigated the bioavailability of 9-cis RA in rat. In addition, we compared two different dose schedules using 9-cis RA. We found that a lower dose of 9-cis RA (2 mg day−1) was non-toxic, but showed no significant effect on tumour growth. The bioavailability of 9-cis RA in rat was 11% and the elimination half-life (t1/2) was 35 min. Considering the short t1/2, we divided the toxic, but tumour growth effective dose 5 mg dayminus;1 into 2.5 mg p.o. twice daily. This treatment regimen showed no toxicity but only limited effect on tumour growth. Our results suggest that 9-cis RA may only have limited clinical significance for treatment of children with poor prognosis neuroblastoma. © 2001 Cancer Research Campaign http://www.bjcancer.com

Keywords: vitamin A, retinoic acid, neuroblastoma, apoptosis, differentiation, nude rat

Full Text

The Full Text of this article is available as a PDF (88.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abemayor E. The effects of retinoic acid on the in vitro and in vivo growth of neuroblastoma cells. Laryngoscope. 1992 Oct;102(10):1133–1149. doi: 10.1288/00005537-199210000-00008. [DOI] [PubMed] [Google Scholar]
  2. Anzano M. A., Byers S. W., Smith J. M., Peer C. W., Mullen L. T., Brown C. C., Roberts A. B., Sporn M. B. Prevention of breast cancer in the rat with 9-cis-retinoic acid as a single agent and in combination with tamoxifen. Cancer Res. 1994 Sep 1;54(17):4614–4617. [PubMed] [Google Scholar]
  3. Biedler J. L., Helson L., Spengler B. A. Morphology and growth, tumorigenicity, and cytogenetics of human neuroblastoma cells in continuous culture. Cancer Res. 1973 Nov;33(11):2643–2652. [PubMed] [Google Scholar]
  4. Disdier B., Bun H., Catalin J., Durand A. Simultaneous determination of all-trans-, 13-cis-, 9-cis-retinoic acid and their 4-oxo-metabolites in plasma by high-performance liquid chromatography. J Chromatogr B Biomed Appl. 1996 Aug 30;683(2):143–154. doi: 10.1016/0378-4347(96)00112-0. [DOI] [PubMed] [Google Scholar]
  5. Disdier B., Marchetti M. N., Bun H., Placidi M., Durand A. Kinetics of plasma and tissue distribution of 9-cis-retinoic acid in rat. Skin Pharmacol Appl Skin Physiol. 2000 Jan-Feb;13(1):9–16. doi: 10.1159/000029904. [DOI] [PubMed] [Google Scholar]
  6. Eckhoff C., Bailey J. R., Collins M. D., Slikker W., Jr, Nau H. Influence of dose and pharmaceutical formulation of vitamin A on plasma levels of retinyl esters and retinol and metabolic generation of retinoic acid compounds and beta-glucuronides in the cynomolgus monkey. Toxicol Appl Pharmacol. 1991 Oct;111(1):116–127. doi: 10.1016/0041-008x(91)90140-a. [DOI] [PubMed] [Google Scholar]
  7. Heyman R. A., Mangelsdorf D. J., Dyck J. A., Stein R. B., Eichele G., Evans R. M., Thaller C. 9-cis retinoic acid is a high affinity ligand for the retinoid X receptor. Cell. 1992 Jan 24;68(2):397–406. doi: 10.1016/0092-8674(92)90479-v. [DOI] [PubMed] [Google Scholar]
  8. Howell S. R., Shirley M. A., Ulm E. H. Effects of retinoid treatment of rats on hepatic microsomal metabolism and cytochromes P450. Correlation between retinoic acid receptor/retinoid x receptor selectivity and effects on metabolic enzymes. Drug Metab Dispos. 1998 Mar;26(3):234–239. [PubMed] [Google Scholar]
  9. Kohler J. A., Imeson J., Ellershaw C., Lie S. O. A randomized trial of 13-Cis retinoic acid in children with advanced neuroblastoma after high-dose therapy. Br J Cancer. 2000 Nov;83(9):1124–1127. doi: 10.1054/bjoc.2000.1425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lanvers C., Hempel G., Blaschke G., Boos J. Simultaneous determination of all-trans-, 13-cis- and 9-cis-retinoic acid, their 4-oxo metabolites and all-trans-retinol in human plasma by high-performance liquid chromatography. J Chromatogr B Biomed Appl. 1996 Oct 25;685(2):233–240. doi: 10.1016/s0378-4347(96)00192-2. [DOI] [PubMed] [Google Scholar]
  11. Lefebvre P., Agadir A., Cornic M., Gourmel B., Hue B., Dreux C., Degos L., Chomienne C. Simultaneous determination of all-trans and 13-cis retinoic acids and their 4-oxo metabolites by adsorption liquid chromatography after solid-phase extraction. J Chromatogr B Biomed Appl. 1995 Apr 7;666(1):55–61. doi: 10.1016/0378-4347(94)00554-i. [DOI] [PubMed] [Google Scholar]
  12. Lovat P. E., Irving H., Annicchiarico-Petruzzelli M., Bernassola F., Malcolm A. J., Pearson A. D., Melino G., Redfern C. P. Apoptosis of N-type neuroblastoma cells after differentiation with 9-cis-retinoic acid and subsequent washout. J Natl Cancer Inst. 1997 Mar 19;89(6):446–452. doi: 10.1093/jnci/89.6.446. [DOI] [PubMed] [Google Scholar]
  13. Matthay K. K., Reynolds C. P. Is there a role for retinoids to treat minimal residual disease in neuroblastoma? Br J Cancer. 2000 Nov;83(9):1121–1123. doi: 10.1054/bjoc.2000.1430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Matthay K. K., Villablanca J. G., Seeger R. C., Stram D. O., Harris R. E., Ramsay N. K., Swift P., Shimada H., Black C. T., Brodeur G. M. Treatment of high-risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13-cis-retinoic acid. Children's Cancer Group. N Engl J Med. 1999 Oct 14;341(16):1165–1173. doi: 10.1056/NEJM199910143411601. [DOI] [PubMed] [Google Scholar]
  15. Nilsson S., Påhlman S., Arnberg H., Letocha H., Westlin J. E. Characterization and uptake of radiolabelled meta-iodobenzylguanidine (MIBG) in a human neuroblastoma heterotransplant model in athymic rats. Acta Oncol. 1993;32(7-8):887–891. doi: 10.3109/02841869309096151. [DOI] [PubMed] [Google Scholar]
  16. Ponthan F., Borgström P., Hassan M., Wassberg E., Redfern C. P., Kogner P. The vitamin A analogues: 13-cis retinoic acid, 9-cis retinoic acid, and Ro 13-6307 inhibit neuroblastoma tumour growth in vivo. Med Pediatr Oncol. 2001 Jan;36(1):127–131. doi: 10.1002/1096-911X(20010101)36:1<127::AID-MPO1030>3.0.CO;2-B. [DOI] [PubMed] [Google Scholar]
  17. Redfern C. P., Lovat P. E., Malcolm A. J., Pearson A. D. Gene expression and neuroblastoma cell differentiation in response to retinoic acid: differential effects of 9-cis and all-trans retinoic acid. Eur J Cancer. 1995;31A(4):486–494. doi: 10.1016/0959-8049(95)00066-r. [DOI] [PubMed] [Google Scholar]
  18. Reynolds C. P., Kane D. J., Einhorn P. A., Matthay K. K., Crouse V. L., Wilbur J. R., Shurin S. B., Seeger R. C. Response of neuroblastoma to retinoic acid in vitro and in vivo. Prog Clin Biol Res. 1991;366:203–211. [PubMed] [Google Scholar]
  19. Shirley M. A., Bennani Y. L., Boehm M. F., Breau A. P., Pathirana C., Ulm E. H. Oxidative and reductive metabolism of 9-cis-retinoic acid in the rat. Identification of 13,14-dihydro-9-cis-retinoic acid and its taurine conjugate. Drug Metab Dispos. 1996 Mar;24(3):293–302. [PubMed] [Google Scholar]
  20. Sidell N. Retinoic acid-induced growth inhibition and morphologic differentiation of human neuroblastoma cells in vitro. J Natl Cancer Inst. 1982 Apr;68(4):589–596. [PubMed] [Google Scholar]
  21. Sucov H. M., Evans R. M. Retinoic acid and retinoic acid receptors in development. Mol Neurobiol. 1995 Apr-Jun;10(2-3):169–184. doi: 10.1007/BF02740674. [DOI] [PubMed] [Google Scholar]
  22. Wassberg E., Påhlman S., Westlin J. E., Christofferson R. The angiogenesis inhibitor TNP-470 reduces the growth rate of human neuroblastoma in nude rats. Pediatr Res. 1997 Mar;41(3):327–333. doi: 10.1203/00006450-199703000-00004. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES