Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 2001 Jul;85(2):209–212. doi: 10.1054/bjoc.2001.1858

Mutation analysis of the CHK2 gene in families with hereditary breast cancer

M Allinen 1, P Huusko 1, S Mäntyniemi 2, V Launonen 3, R Winqvist 1
PMCID: PMC2364033  PMID: 11461078

Abstract

Recently CHK2 was functionally linked to the p53 pathway, and mutations in these two genes seem to result in a similar Li–Fraumeni syndrome (LFS) or Li–Fraumeni-like syndrome (LFL) multi-cancer phenotype frequently including breast cancer. As CHK2 has been found to bind and regulate BRCA1, the product of one of the 2 known major susceptibility genes to hereditary breast cancer, it also more directly makes CHK2 a suitable candidate gene for hereditary predisposition to breast cancer. Here we have screened 79 Finnish hereditary breast cancer families for germline CHK2 alterations. Twenty-one of these families also fulfilled the criteria for LFL or LFS. All families had previously been found negative for germline BRCA1 BRCA2 and TP53 mutations, together explaining about 23% of hereditary predisposition to breast cancer in our country. Only one missense-type mutation, Ile157→Thr157, was detected. The high Ile157 → Thr157mutation frequency (6.5%) observed in healthy controls and the lack of other mutations suggest that CHK2 does not contribute significantly to the hereditary breast cancer or LFL-associated breast cancer risk, at least not in the Finnish population. For Ile157 → Thr157our result deviates from what has been reported previously. © 2001 Cancer Research Campaign http://www.bjcancer.com

Keywords: hereditary breast cancer, CHK2 mutations, Li–Fraumeni-like syndrome

Full Text

The Full Text of this article is available as a PDF (56.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bell D. W., Varley J. M., Szydlo T. E., Kang D. H., Wahrer D. C., Shannon K. E., Lubratovich M., Verselis S. J., Isselbacher K. J., Fraumeni J. F. Heterozygous germ line hCHK2 mutations in Li-Fraumeni syndrome. Science. 1999 Dec 24;286(5449):2528–2531. doi: 10.1126/science.286.5449.2528. [DOI] [PubMed] [Google Scholar]
  2. Easton D. F. How many more breast cancer predisposition genes are there? Breast Cancer Res. 1999 Aug 23;1(1):14–17. doi: 10.1186/bcr6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Eng C., Schneider K., Fraumeni J. F., Jr, Li F. P. Third international workshop on collaborative interdisciplinary studies of p53 and other predisposing genes in Li-Fraumeni syndrome. Cancer Epidemiol Biomarkers Prev. 1997 May;6(5):379–383. [PubMed] [Google Scholar]
  4. Garber J. E., Goldstein A. M., Kantor A. F., Dreyfus M. G., Fraumeni J. F., Jr, Li F. P. Follow-up study of twenty-four families with Li-Fraumeni syndrome. Cancer Res. 1991 Nov 15;51(22):6094–6097. [PubMed] [Google Scholar]
  5. Hirao A., Kong Y. Y., Matsuoka S., Wakeham A., Ruland J., Yoshida H., Liu D., Elledge S. J., Mak T. W. DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science. 2000 Mar 10;287(5459):1824–1827. doi: 10.1126/science.287.5459.1824. [DOI] [PubMed] [Google Scholar]
  6. Huusko P., Castrén K., Launonen V., Soini Y., Päkkönen K., Leisti J., Vähäkangas K., Winqvist R. Germ-line TP53 mutations in Finnish cancer families exhibiting features of the Li-Fraumeni syndrome and negative for BRCA1 and BRCA2. Cancer Genet Cytogenet. 1999 Jul 1;112(1):9–14. doi: 10.1016/s0165-4608(98)00258-1. [DOI] [PubMed] [Google Scholar]
  7. Huusko P., Päkkönen K., Launonen V., Pöyhönen M., Blanco G., Kauppila A., Puistola U., Kiviniemi H., Kujala M., Leisti J. Evidence of founder mutations in Finnish BRCA1 and BRCA2 families. Am J Hum Genet. 1998 Jun;62(6):1544–1548. doi: 10.1086/301880. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kainu T., Juo S. H., Desper R., Schaffer A. A., Gillanders E., Rozenblum E., Freas-Lutz D., Weaver D., Stephan D., Bailey-Wilson J. Somatic deletions in hereditary breast cancers implicate 13q21 as a putative novel breast cancer susceptibility locus. Proc Natl Acad Sci U S A. 2000 Aug 15;97(17):9603–9608. doi: 10.1073/pnas.97.17.9603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Körkkö J., Annunen S., Pihlajamaa T., Prockop D. J., Ala-Kokko L. Conformation sensitive gel electrophoresis for simple and accurate detection of mutations: comparison with denaturing gradient gel electrophoresis and nucleotide sequencing. Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1681–1685. doi: 10.1073/pnas.95.4.1681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lee J. S., Collins K. M., Brown A. L., Lee C. H., Chung J. H. hCds1-mediated phosphorylation of BRCA1 regulates the DNA damage response. Nature. 2000 Mar 9;404(6774):201–204. doi: 10.1038/35004614. [DOI] [PubMed] [Google Scholar]
  11. Lichtenstein P., Holm N. V., Verkasalo P. K., Iliadou A., Kaprio J., Koskenvuo M., Pukkala E., Skytthe A., Hemminki K. Environmental and heritable factors in the causation of cancer--analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med. 2000 Jul 13;343(2):78–85. doi: 10.1056/NEJM200007133430201. [DOI] [PubMed] [Google Scholar]
  12. Miki Y., Swensen J., Shattuck-Eidens D., Futreal P. A., Harshman K., Tavtigian S., Liu Q., Cochran C., Bennett L. M., Ding W. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science. 1994 Oct 7;266(5182):66–71. doi: 10.1126/science.7545954. [DOI] [PubMed] [Google Scholar]
  13. Prives C., Hall P. A. The p53 pathway. J Pathol. 1999 Jan;187(1):112–126. doi: 10.1002/(SICI)1096-9896(199901)187:1<112::AID-PATH250>3.0.CO;2-3. [DOI] [PubMed] [Google Scholar]
  14. Rapakko K., Allinen M., Syrjäkoski K., Vahteristo P., Huusko P., Vähäkangas K., Eerola H., Kainu T., Kallioniemi O. P., Nevanlinna H. Germline TP53 alterations in Finnish breast cancer families are rare and occur at conserved mutation-prone sites. Br J Cancer. 2001 Jan 5;84(1):116–119. doi: 10.1054/bjoc.2000.1530. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sun Z., Hsiao J., Fay D. S., Stern D. F. Rad53 FHA domain associated with phosphorylated Rad9 in the DNA damage checkpoint. Science. 1998 Jul 10;281(5374):272–274. doi: 10.1126/science.281.5374.272. [DOI] [PubMed] [Google Scholar]
  16. Vehmanen P., Friedman L. S., Eerola H., McClure M., Ward B., Sarantaus L., Kainu T., Syrjäkoski K., Pyrhönen S., Kallioniemi O. P. Low proportion of BRCA1 and BRCA2 mutations in Finnish breast cancer families: evidence for additional susceptibility genes. Hum Mol Genet. 1997 Dec;6(13):2309–2315. doi: 10.1093/hmg/6.13.2309. [DOI] [PubMed] [Google Scholar]
  17. Vehmanen P., Friedman L. S., Eerola H., Sarantaus L., Pyrhönen S., Ponder B. A., Muhonen T., Nevanlinna H. A low proportion of BRCA2 mutations in Finnish breast cancer families. Am J Hum Genet. 1997 May;60(5):1050–1058. [PMC free article] [PubMed] [Google Scholar]
  18. Wang Y., Cortez D., Yazdi P., Neff N., Elledge S. J., Qin J. BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Dev. 2000 Apr 15;14(8):927–939. [PMC free article] [PubMed] [Google Scholar]
  19. Wooster R., Bignell G., Lancaster J., Swift S., Seal S., Mangion J., Collins N., Gregory S., Gumbs C., Micklem G. Identification of the breast cancer susceptibility gene BRCA2. Nature. 1995 Dec 21;378(6559):789–792. doi: 10.1038/378789a0. [DOI] [PubMed] [Google Scholar]
  20. Wu X., Webster S. R., Chen J. Characterization of tumor-associated Chk2 mutations. J Biol Chem. 2000 Oct 26;276(4):2971–2974. doi: 10.1074/jbc.M009727200. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES