Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 2001 Jul;85(2):279–284. doi: 10.1054/bjoc.2001.1875

Photosensitization and mechanism of cytotoxicity induced by the use of ALA derivatives in photodynamic therapy

A Casas 1, H Fukuda 1, G Di Venosa 1, A Batlle 1
PMCID: PMC2364046  PMID: 11461090

Abstract

The use of more lipophilic derivatives of 5-aminolevulinic acid (ALA) is expected to have better diffusing properties, and after conversion into the parent ALA, to reach a higher protoporphyrin IX (PPIX) formation rate, thus improving the efficacy of topical photodynamic therapy (PDT). Here we have analysed the behaviour of 3 ALA derivatives (ALA methyl-ester, hexyl ester and a 2-sided derivative) regarding PPIX formation, efficiency in photosensitizing cells and mechanism of cellular death. The maximum amount of porphyrins synthesized from 0.6 mM ALA was 47 ± 8 ng/105 cells. The same amount was formed by a concentration 60-fold lower of hexyl-ALA and 2-fold higher of methyl-ALA. The 2-sided derivative failed to produce PPIX accumulation. Applying a 0.6 J cm−2 light dose, cell viability decreased to 50%. With the 1.5 J cm−2 light dose, less than 20% of the cells survive, and higher light doses produced nearly total cell killing. Comparing the PPIX production and the induced phototoxicity, the more the amount of porphyrins, the greater the cellular killing, and PPIX formed from either ALA or ALA-esters equally sensitize the cells to photoinactivation. ALA-PDT treated cells exhibited features of apoptosis, independently on the pro-photosensitizer employed. ALA-PDT can be improved with the use of ALA derivatives, reducing the amount of ALA necessary to induce efficient photosensitization. ©2001 Cancer Research Campaign http://www.bjcancer.com

Keywords: photodynamic therapy, PDT, aminolevulinic acid, ALA, ALA derivatives, apoptosis

Full Text

The Full Text of this article is available as a PDF (123.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agarwal M. L., Larkin H. E., Zaidi S. I., Mukhtar H., Oleinick N. L. Phospholipase activation triggers apoptosis in photosensitized mouse lymphoma cells. Cancer Res. 1993 Dec 15;53(24):5897–5902. [PubMed] [Google Scholar]
  2. Baumgartner R., Huber R. M., Schulz H., Stepp H., Rick K., Gamarra F., Leberig A., Roth C. Inhalation of 5-aminolevulinic acid: a new technique for fluorescence detection of early stage lung cancer. J Photochem Photobiol B. 1996 Nov;36(2):169–174. doi: 10.1016/s1011-1344(96)07365-4. [DOI] [PubMed] [Google Scholar]
  3. Casas A., Batlle A. M., Butler A. R., Robertson D., Brown E. H., MacRobert A., Riley P. A. Comparative effect of ALA derivatives on protoporphyrin IX production in human and rat skin organ cultures. Br J Cancer. 1999 Jul;80(10):1525–1532. doi: 10.1038/sj.bjc.6690556. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dellinger M. Apoptosis or necrosis following Photofrin photosensitization: influence of the incubation protocol. Photochem Photobiol. 1996 Jul;64(1):182–187. doi: 10.1111/j.1751-1097.1996.tb02440.x. [DOI] [PubMed] [Google Scholar]
  5. Denizot F., Lang R. Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods. 1986 May 22;89(2):271–277. doi: 10.1016/0022-1759(86)90368-6. [DOI] [PubMed] [Google Scholar]
  6. Fan K. F., Hopper C., Speight P. M., Buonaccorsi G., MacRobert A. J., Bown S. G. Photodynamic therapy using 5-aminolevulinic acid for premalignant and malignant lesions of the oral cavity. Cancer. 1996 Oct 1;78(7):1374–1383. doi: 10.1002/(SICI)1097-0142(19961001)78:7<1374::AID-CNCR2>3.0.CO;2-L. [DOI] [PubMed] [Google Scholar]
  7. Fritsch C., Homey B., Stahl W., Lehmann P., Ruzicka T., Sies H. Preferential relative porphyrin enrichment in solar keratoses upon topical application of delta-aminolevulinic acid methylester. Photochem Photobiol. 1998 Aug;68(2):218–221. [PubMed] [Google Scholar]
  8. Fukuda H., Casas A., Chueke F., Paredes S., Batlle A. M. Photodynamic action of endogenously synthesized porphyrins from aminolevulinic acid, using a new model for assaying the effectiveness of tumoral cell killing. Int J Biochem. 1993 Oct;25(10):1395–1398. doi: 10.1016/0020-711x(93)90687-a. [DOI] [PubMed] [Google Scholar]
  9. Galli S., Colombo L., Vanzuli S., Daroqui M. C., del Carmen Vidal M., Jasnis M. A., Sacerdote de Lustig E., Eijan A. M. Characterization of a fibroblastoid mammary carcinoma cell line (LM2) originated from a mouse adenocarcinoma. Int J Oncol. 2000 Dec;17(6):1259–1265. doi: 10.3892/ijo.17.6.1259. [DOI] [PubMed] [Google Scholar]
  10. Gaullier J. M., Berg K., Peng Q., Anholt H., Selbo P. K., Ma L. W., Moan J. Use of 5-aminolevulinic acid esters to improve photodynamic therapy on cells in culture. Cancer Res. 1997 Apr 15;57(8):1481–1486. [PubMed] [Google Scholar]
  11. Gossner L., Stolte M., Sroka R., Rick K., May A., Hahn E. G., Ell C. Photodynamic ablation of high-grade dysplasia and early cancer in Barrett's esophagus by means of 5-aminolevulinic acid. Gastroenterology. 1998 Mar;114(3):448–455. doi: 10.1016/s0016-5085(98)70527-x. [DOI] [PubMed] [Google Scholar]
  12. He J., Whitacre C. M., Xue L. Y., Berger N. A., Oleinick N. L. Protease activation and cleavage of poly(ADP-ribose) polymerase: an integral part of apoptosis in response to photodynamic treatment. Cancer Res. 1998 Mar 1;58(5):940–946. [PubMed] [Google Scholar]
  13. He X. Y., Sikes R. A., Thomsen S., Chung L. W., Jacques S. L. Photodynamic therapy with photofrin II induces programmed cell death in carcinoma cell lines. Photochem Photobiol. 1994 Apr;59(4):468–473. doi: 10.1111/j.1751-1097.1994.tb05066.x. [DOI] [PubMed] [Google Scholar]
  14. Jichlinski P., Forrer M., Mizeret J., Glanzmann T., Braichotte D., Wagnières G., Zimmer G., Guillou L., Schmidlin F., Graber P. Clinical evaluation of a method for detecting superficial surgical transitional cell carcinoma of the bladder by light-induced fluorescence of protoporphyrin IX following the topical application of 5-aminolevulinic acid: preliminary results. Lasers Surg Med. 1997;20(4):402–408. doi: 10.1002/(sici)1096-9101(1997)20:4<402::aid-lsm5>3.0.co;2-u. [DOI] [PubMed] [Google Scholar]
  15. Kennedy J. C., Pottier R. H., Pross D. C. Photodynamic therapy with endogenous protoporphyrin IX: basic principles and present clinical experience. J Photochem Photobiol B. 1990 Jun;6(1-2):143–148. doi: 10.1016/1011-1344(90)85083-9. [DOI] [PubMed] [Google Scholar]
  16. Kloek J., Akkermans W., Beijersbergen van Henegouwen G. M. Derivatives of 5-aminolevulinic acid for photodynamic therapy: enzymatic conversion into protoporphyrin. Photochem Photobiol. 1998 Jan;67(1):150–154. [PubMed] [Google Scholar]
  17. Kloek J., Beijersbergen van Henegouwen Prodrugs of 5-aminolevulinic acid for photodynamic therapy. Photochem Photobiol. 1996 Dec;64(6):994–1000. doi: 10.1111/j.1751-1097.1996.tb01868.x. [DOI] [PubMed] [Google Scholar]
  18. Kriegmair M., Baumgartner R., Knüchel R., Stepp H., Hofstädter F., Hofstetter A. Detection of early bladder cancer by 5-aminolevulinic acid induced porphyrin fluorescence. J Urol. 1996 Jan;155(1):105–110. [PubMed] [Google Scholar]
  19. Lange N., Jichlinski P., Zellweger M., Forrer M., Marti A., Guillou L., Kucera P., Wagnières G., van den Bergh H. Photodetection of early human bladder cancer based on the fluorescence of 5-aminolaevulinic acid hexylester-induced protoporphyrin IX: a pilot study. Br J Cancer. 1999 Apr;80(1-2):185–193. doi: 10.1038/sj.bjc.6690338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Miyamoto Y., Umebayashi Y., Nishisaka T. Comparison of phototoxicity mechanism between pulsed and continuous wave irradiation in photodynamic therapy. J Photochem Photobiol B. 1999 Nov-Dec;53(1-3):53–59. doi: 10.1016/s1011-1344(99)00125-6. [DOI] [PubMed] [Google Scholar]
  21. Moan J., Bech O., Gaullier J. M., Stokke T., Steen H. B., Ma L. W., Berg K. Protoporphyrin IX accumulation in cells treated with 5-aminolevulinic acid: dependence on cell density, cell size and cell cycle. Int J Cancer. 1998 Jan 5;75(1):134–139. doi: 10.1002/(sici)1097-0215(19980105)75:1<134::aid-ijc20>3.0.co;2-f. [DOI] [PubMed] [Google Scholar]
  22. Moan J., Berg K. Photochemotherapy of cancer: experimental research. Photochem Photobiol. 1992 Jun;55(6):931–948. doi: 10.1111/j.1751-1097.1992.tb08541.x. [DOI] [PubMed] [Google Scholar]
  23. Noodt B. B., Berg K., Stokke T., Peng Q., Nesland J. M. Apoptosis and necrosis induced with light and 5-aminolaevulinic acid-derived protoporphyrin IX. Br J Cancer. 1996 Jul;74(1):22–29. doi: 10.1038/bjc.1996.310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Peng Q., Moan J., Warloe T., Iani V., Steen H. B., Bjørseth A., Nesland J. M. Build-up of esterified aminolevulinic-acid-derivative-induced porphyrin fluorescence in normal mouse skin. J Photochem Photobiol B. 1996 Jun;34(1):95–96. doi: 10.1016/1011-1344(95)07268-3. [DOI] [PubMed] [Google Scholar]
  25. Savin J. A. Osler and the skin. Br J Dermatol. 2000 Jul;143(1):1–8. doi: 10.1046/j.1365-2133.2000.03581.x. [DOI] [PubMed] [Google Scholar]
  26. Steinbach P., Weingandt H., Baumgartner R., Kriegmair M., Hofstädter F., Knüchel R. Cellular fluorescence of the endogenous photosensitizer protoporphyrin IX following exposure to 5-aminolevulinic acid. Photochem Photobiol. 1995 Nov;62(5):887–895. doi: 10.1111/j.1751-1097.1995.tb09152.x. [DOI] [PubMed] [Google Scholar]
  27. Stummer W., Stocker S., Wagner S., Stepp H., Fritsch C., Goetz C., Goetz A. E., Kiefmann R., Reulen H. J. Intraoperative detection of malignant gliomas by 5-aminolevulinic acid-induced porphyrin fluorescence. Neurosurgery. 1998 Mar;42(3):518–526. doi: 10.1097/00006123-199803000-00017. [DOI] [PubMed] [Google Scholar]
  28. Uehlinger P., Zellweger M., Wagnières G., Juillerat-Jeanneret L., van den Bergh H., Lange N. 5-Aminolevulinic acid and its derivatives: physical chemical properties and protoporphyrin IX formation in cultured cells. J Photochem Photobiol B. 2000 Jan;54(1):72–80. doi: 10.1016/s1011-1344(99)00159-1. [DOI] [PubMed] [Google Scholar]
  29. Washbrook R., Riley P. A. Comparison of delta-aminolaevulinic acid and its methyl ester as an inducer of porphyrin synthesis in cultured cells. Br J Cancer. 1997;75(10):1417–1420. doi: 10.1038/bjc.1997.244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Webber J., Luo Y., Crilly R., Fromm D., Kessel D. An apoptotic response to photodynamic therapy with endogenous protoporphyrin in vivo. J Photochem Photobiol B. 1996 Sep;35(3):209–211. doi: 10.1016/s1011-1344(96)07291-0. [DOI] [PubMed] [Google Scholar]
  31. Wilson B. D., Mang T. S., Stoll H., Jones C., Cooper M., Dougherty T. J. Photodynamic therapy for the treatment of basal cell carcinoma. Arch Dermatol. 1992 Dec;128(12):1597–1601. [PubMed] [Google Scholar]
  32. Wyss P., Fehr M., Van den Bergh H., Haller U. Feasibility of photodynamic endometrial ablation without anesthesia. Int J Gynaecol Obstet. 1998 Mar;60(3):287–288. doi: 10.1016/s0020-7292(98)00004-6. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES