Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 2001 Aug;85(3):412–421. doi: 10.1054/bjoc.2001.1934

Clinical significance of CDC25A and CDC25B expression in squamous cell carcinomas of the oesophagus

K Nishioka 1, Y Doki 1, H Shiozaki 1, H Yamamoto 1, S Tamura 1, T Yasuda 1, Y Fujiwara 1, M Yano 1, H Miyata 1, K Kishi 1, H Nakagawa 1, A Shamma 1, M Monden 1
PMCID: PMC2364065  PMID: 11487274

Abstract

CDC25A, CDC25B and CDC25C belong to a family of protein phosphatases which activate the cyclin-dependent kinase at different points of the cell cycle. According to accumulating evidence, CDC25A and CDC25B seem to possess oncogenic properties. We have analysed these expressions by immunohistochemistry, western blot and RT-PCR in a series of 100 patients with squamous cell carcinoma of the oesophagus. When compared with non-cancerous cells, CDC25A and CDC25B were strongly expressed in the cytoplasm of cancer cells, with positive (+) classification in 46% (46 cases) and 48% (48 cases), respectively. There was no significant correlation between CDC25A and CDC25B expression, nor was there any association with the expression of other cell cycle-regulating molecules, including cyclin D1, Rb, p16INK4, p27KIP1 and PCNA (proliferating cell nuclear antigen). CDC25A (+), as well as CDC25B (+), was more frequently found in patients with deeper tumour invasion and lymph node metastasis, while tumour size was correlated only with CDC25A expression. Postoperative survival was significantly poorer for CDC25A (+) patients than CDC25A (–) patients, but was not affected by the CDC25B status. Nuclear localization of CDC25A was observed in 51 cases (51%), regardless of its cytoplasmic expression, and was not associated with clinico-pathological factors or prognosis. Multivariate analysis revealed only the CDC25A status to be an independent significant prognostic factor among these biological and clinico-pathological factors. CDC25A but not CDC25B may be a new prognostic factor for squamous cell carcinoma of the oesophagus. Thus, regulation of the G1 checkpoint in the cell cycle may be important in oesophageal carcinogenesis, which may also involve many other oncogenes. © 2001 Cancer Research Campaign http://www.bjcancer.com

Keywords: squamous cell carcinoma of the oesophagus, CDC25A, CDC25B, prognosis

Full Text

The Full Text of this article is available as a PDF (418.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chen X., Prywes R. Serum-induced expression of the cdc25A gene by relief of E2F-mediated repression. Mol Cell Biol. 1999 Jul;19(7):4695–4702. doi: 10.1128/mcb.19.7.4695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  3. Chretien S., Dubart A., Beaupain D., Raich N., Grandchamp B., Rosa J., Goossens M., Romeo P. H. Alternative transcription and splicing of the human porphobilinogen deaminase gene result either in tissue-specific or in housekeeping expression. Proc Natl Acad Sci U S A. 1988 Jan;85(1):6–10. doi: 10.1073/pnas.85.1.6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ciaparrone M., Yamamoto H., Yao Y., Sgambato A., Cattoretti G., Tomita N., Monden T., Rotterdam H., Weinstein I. B. Localization and expression of p27KIP1 in multistage colorectal carcinogenesis. Cancer Res. 1998 Jan 1;58(1):114–122. [PubMed] [Google Scholar]
  5. Coco Martin J. M., Balkenende A., Verschoor T., Lallemand F., Michalides R. Cyclin D1 overexpression enhances radiation-induced apoptosis and radiosensitivity in a breast tumor cell line. Cancer Res. 1999 Mar 1;59(5):1134–1140. [PubMed] [Google Scholar]
  6. Dixon D., Moyana T., King M. J. Elevated expression of the cdc25A protein phosphatase in colon cancer. Exp Cell Res. 1998 May 1;240(2):236–243. doi: 10.1006/excr.1998.3940. [DOI] [PubMed] [Google Scholar]
  7. Funaoka K., Shindoh M., Yamashita T., Fujinaga K., Amemiya A., Totsuka Y. High-risk HPV-positive human cancer cell lines show different sensitivity to cisplatin-induced apoptosis correlated with the p21Waf1/Cip1 level. Cancer Lett. 1996 Nov 12;108(1):15–23. doi: 10.1016/s0304-3835(96)04362-5. [DOI] [PubMed] [Google Scholar]
  8. Gabrielli B. G., De Souza C. P., Tonks I. D., Clark J. M., Hayward N. K., Ellem K. A. Cytoplasmic accumulation of cdc25B phosphatase in mitosis triggers centrosomal microtubule nucleation in HeLa cells. J Cell Sci. 1996 May;109(Pt 5):1081–1093. doi: 10.1242/jcs.109.5.1081. [DOI] [PubMed] [Google Scholar]
  9. Galaktionov K., Beach D. Specific activation of cdc25 tyrosine phosphatases by B-type cyclins: evidence for multiple roles of mitotic cyclins. Cell. 1991 Dec 20;67(6):1181–1194. doi: 10.1016/0092-8674(91)90294-9. [DOI] [PubMed] [Google Scholar]
  10. Galaktionov K., Chen X., Beach D. Cdc25 cell-cycle phosphatase as a target of c-myc. Nature. 1996 Aug 8;382(6591):511–517. doi: 10.1038/382511a0. [DOI] [PubMed] [Google Scholar]
  11. Galaktionov K., Lee A. K., Eckstein J., Draetta G., Meckler J., Loda M., Beach D. CDC25 phosphatases as potential human oncogenes. Science. 1995 Sep 15;269(5230):1575–1577. doi: 10.1126/science.7667636. [DOI] [PubMed] [Google Scholar]
  12. Gasparotto D., Maestro R., Piccinin S., Vukosavljevic T., Barzan L., Sulfaro S., Boiocchi M. Overexpression of CDC25A and CDC25B in head and neck cancers. Cancer Res. 1997 Jun 15;57(12):2366–2368. [PubMed] [Google Scholar]
  13. Hernández S., Hernández L., Beà S., Cazorla M., Fernández P. L., Nadal A., Muntané J., Mallofré C., Montserrat E., Cardesa A. cdc25 cell cycle-activating phosphatases and c-myc expression in human non-Hodgkin's lymphomas. Cancer Res. 1998 Apr 15;58(8):1762–1767. [PubMed] [Google Scholar]
  14. Hunter T., Pines J. Cyclins and cancer. II: Cyclin D and CDK inhibitors come of age. Cell. 1994 Nov 18;79(4):573–582. doi: 10.1016/0092-8674(94)90543-6. [DOI] [PubMed] [Google Scholar]
  15. Kang S. H., Bang Y. J., Jong H. S., Seo J. Y., Kim N. K., Kim S. J. Rapid induction of p21WAF1 but delayed down-regulation of Cdc25A in the TGF-beta-induced cell cycle arrest of gastric carcinoma cells. Br J Cancer. 1999 Jun;80(8):1144–1149. doi: 10.1038/sj.bjc.6690478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Karlsson C., Katich S., Hagting A., Hoffmann I., Pines J. Cdc25B and Cdc25C differ markedly in their properties as initiators of mitosis. J Cell Biol. 1999 Aug 9;146(3):573–584. doi: 10.1083/jcb.146.3.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kokunai T., Tamaki N. Relationship between expression of p21WAF1/CIP1 and radioresistance in human gliomas. Jpn J Cancer Res. 1999 Jun;90(6):638–646. doi: 10.1111/j.1349-7006.1999.tb00795.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kudo Y., Yasui W., Ue T., Yamamoto S., Yokozaki H., Nikai H., Tahara E. Overexpression of cyclin-dependent kinase-activating CDC25B phosphatase in human gastric carcinomas. Jpn J Cancer Res. 1997 Oct;88(10):947–952. doi: 10.1111/j.1349-7006.1997.tb00313.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lu S. H., Hsieh L. L., Luo F. C., Weinstein I. B. Amplification of the EGF receptor and c-myc genes in human esophageal cancers. Int J Cancer. 1988 Oct 15;42(4):502–505. doi: 10.1002/ijc.2910420406. [DOI] [PubMed] [Google Scholar]
  20. Miyata H., Doki Y., Shiozaki H., Inoue M., Yano M., Fujiwara Y., Yamamoto H., Nishioka K., Kishi K., Monden M. CDC25B and p53 are independently implicated in radiation sensitivity for human esophageal cancers. Clin Cancer Res. 2000 Dec;6(12):4859–4865. [PubMed] [Google Scholar]
  21. Nagata A., Igarashi M., Jinno S., Suto K., Okayama H. An additional homolog of the fission yeast cdc25+ gene occurs in humans and is highly expressed in some cancer cells. New Biol. 1991 Oct;3(10):959–968. [PubMed] [Google Scholar]
  22. Nagel S., Schmidt M., Thiede C., Huhn D., Neubauer A. Quantification of Bcr-Abl transcripts in chronic myelogenous leukemia (CML) using standardized, internally controlled, competitive differential PCR (CD-PCR). Nucleic Acids Res. 1996 Oct 15;24(20):4102–4103. doi: 10.1093/nar/24.20.4102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Okami J., Yamamoto H., Fujiwara Y., Tsujie M., Kondo M., Noura S., Oshima S., Nagano H., Dono K., Umeshita K. Overexpression of cyclooxygenase-2 in carcinoma of the pancreas. Clin Cancer Res. 1999 Aug;5(8):2018–2024. [PubMed] [Google Scholar]
  24. Pines J. Cyclins and cyclin-dependent kinases: theme and variations. Adv Cancer Res. 1995;66:181–212. doi: 10.1016/s0065-230x(08)60254-7. [DOI] [PubMed] [Google Scholar]
  25. Sadhu K., Reed S. I., Richardson H., Russell P. Human homolog of fission yeast cdc25 mitotic inducer is predominantly expressed in G2. Proc Natl Acad Sci U S A. 1990 Jul;87(13):5139–5143. doi: 10.1073/pnas.87.13.5139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Saha P., Eichbaum Q., Silberman E. D., Mayer B. J., Dutta A. p21CIP1 and Cdc25A: competition between an inhibitor and an activator of cyclin-dependent kinases. Mol Cell Biol. 1997 Aug;17(8):4338–4345. doi: 10.1128/mcb.17.8.4338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sherr C. J. G1 phase progression: cycling on cue. Cell. 1994 Nov 18;79(4):551–555. doi: 10.1016/0092-8674(94)90540-1. [DOI] [PubMed] [Google Scholar]
  28. Takemasa I., Yamamoto H., Sekimoto M., Ohue M., Noura S., Miyake Y., Matsumoto T., Aihara T., Tomita N., Tamaki Y. Overexpression of CDC25B phosphatase as a novel marker of poor prognosis of human colorectal carcinoma. Cancer Res. 2000 Jun 1;60(11):3043–3050. [PubMed] [Google Scholar]
  29. Warenius H. M., Seabra L. A., Maw P. Sensitivity to cis-diamminedichloroplatinum in human cancer cells is related to expression of cyclin D1 but not c-raf-1 protein. Int J Cancer. 1996 Jul 17;67(2):224–231. doi: 10.1002/(SICI)1097-0215(19960717)67:2<224::AID-IJC13>3.0.CO;2-B. [DOI] [PubMed] [Google Scholar]
  30. Wu W., Fan Y. H., Kemp B. L., Walsh G., Mao L. Overexpression of cdc25A and cdc25B is frequent in primary non-small cell lung cancer but is not associated with overexpression of c-myc. Cancer Res. 1998 Sep 15;58(18):4082–4085. [PubMed] [Google Scholar]
  31. Yamamoto H., Soh J. W., Shirin H., Xing W. Q., Lim J. T., Yao Y., Slosberg E., Tomita N., Schieren I., Weinstein I. B. Comparative effects of overexpression of p27Kip1 and p21Cip1/Waf1 on growth and differentiation in human colon carcinoma cells. Oncogene. 1999 Jan 7;18(1):103–115. doi: 10.1038/sj.onc.1202269. [DOI] [PubMed] [Google Scholar]
  32. Yao Y., Slosberg E. D., Wang L., Hibshoosh H., Zhang Y. J., Xing W. Q., Santella R. M., Weinstein I. B. Increased susceptibility to carcinogen-induced mammary tumors in MMTV-Cdc25B transgenic mice. Oncogene. 1999 Sep 16;18(37):5159–5166. doi: 10.1038/sj.onc.1202908. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES