Abstract
Prostate androgen regulated transcript 1 (PART-1), is a gene predominantly expressed in the prostate gland and is regulated by androgens in human prostate cancer cell lines. Here, we report additional characteristics of PART-1 tissue expression and hormonal regulation and study its expression profile in human normal and matched prostate cancer tissues. Since PART-1 shows similarity to prostate-specific antigen (PSA) in prostate specificity and regulation, we hypothesized that it may be implicated in prostate carcinogenesis or may be a potential new biomarker. We used reverse transcriptase polymerase chain reaction (RT-PCR) to further characterize PART-1 tissue expression and hormonal regulation in the LNCaP prostate cancer cell line. RT-PCR analysis revealed that PART-1 is expressed not only in the prostate and salivary gland, but also in other tissues, including the thymus and placenta. In addition to androgen stimulation, PART-1 is also up-regulated by progestins, oestrogens and glucocorticoids. We further studied the expression of PART-1 in 27 paired (from the same patient) cancerous and non-cancerous prostatic tissues, with qualitative and quantitative RT-PCR (LightCycler®technology), in order to examine whether PART-1 is overexpressed or underexpressed in cancer. Our results indicated that PART-1 is more frequently overexpressed in the cancerous prostatic tissue. We conclude that this gene is overexpressed in prostate cancer and may represent a novel prostate cancer tumour marker. © 2001 Cancer Research Campaign http://www.bjcancer.com
Keywords: prostate cancer, androgen regulated transcript, quantitative RT-PCR, differentially expressed genes, tumour markers, PART-1
Full Text
The Full Text of this article is available as a PDF (95.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Black M. H., Diamandis E. P. The diagnostic and prognostic utility of prostate-specific antigen for diseases of the breast. Breast Cancer Res Treat. 2000 Jan;59(1):1–14. doi: 10.1023/a:1006380306781. [DOI] [PubMed] [Google Scholar]
- Diamandis E. P. Prostate-specific antigen: a cancer fighter and a valuable messenger? Clin Chem. 2000 Jul;46(7):896–900. [PubMed] [Google Scholar]
- Haese A., Becker C., Noldus J., Graefen M., Huland E., Huland H., Lilja H. Human glandular kallikrein 2: a potential serum marker for predicting the organ confined versus non-organ confined growth of prostate cancer. J Urol. 2000 May;163(5):1491–1497. doi: 10.1016/s0022-5347(05)67649-5. [DOI] [PubMed] [Google Scholar]
- Lin B., White J. T., Ferguson C., Bumgarner R., Friedman C., Trask B., Ellis W., Lange P., Hood L., Nelson P. S. PART-1: a novel human prostate-specific, androgen-regulated gene that maps to chromosome 5q12. Cancer Res. 2000 Feb 15;60(4):858–863. [PubMed] [Google Scholar]
- Magklara A., Scorilas A., Catalona W. J., Diamandis E. P. The combination of human glandular kallikrein and free prostate-specific antigen (PSA) enhances discrimination between prostate cancer and benign prostatic hyperplasia in patients with moderately increased total PSA. Clin Chem. 1999 Nov;45(11):1960–1966. [PubMed] [Google Scholar]
- Magklara A., Scorilas A., Stephan C., Kristiansen G. O., Hauptmann S., Jung K., Diamandis E. P. Decreased concentrations of prostate-specific antigen and human glandular kallikrein 2 in malignant versus nonmalignant prostatic tissue. Urology. 2000 Sep 1;56(3):527–532. doi: 10.1016/s0090-4295(00)00621-x. [DOI] [PubMed] [Google Scholar]
- McCormack R. T., Rittenhouse H. G., Finlay J. A., Sokoloff R. L., Wang T. J., Wolfert R. L., Lilja H., Oesterling J. E. Molecular forms of prostate-specific antigen and the human kallikrein gene family: a new era. Urology. 1995 May;45(5):729–744. doi: 10.1016/s0090-4295(99)80076-4. [DOI] [PubMed] [Google Scholar]
- McDavid K., Melnik T. A., Derderian H. Prostate cancer screening trends of New York State men at least 50 years of age, 1994 to 1997. Prev Med. 2000 Sep;31(3):195–202. doi: 10.1006/pmed.2000.0709. [DOI] [PubMed] [Google Scholar]
- McDonald S., Brive L., Agus D. B., Scher H. I., Ely K. R. Ligand responsiveness in human prostate cancer: structural analysis of mutant androgen receptors from LNCaP and CWR22 tumors. Cancer Res. 2000 May 1;60(9):2317–2322. [PubMed] [Google Scholar]
- Moran W. P., Cohen S. J., Preisser J. S., Wofford J. L., Shelton B. J., McClatchey M. W. Factors influencing use of the prostate-specific antigen screening test in primary care. Am J Manag Care. 2000 Mar;6(3):315–324. [PubMed] [Google Scholar]
- Oesterling J. E. Prostate specific antigen: a critical assessment of the most useful tumor marker for adenocarcinoma of the prostate. J Urol. 1991 May;145(5):907–923. doi: 10.1016/s0022-5347(17)38491-4. [DOI] [PubMed] [Google Scholar]
- Rhim J. S. Molecular and genetic mechanisms of prostate cancer. Radiat Res. 2001 Jan;155(1 Pt 2):128–132. doi: 10.1667/0033-7587(2001)155[0128:magmop]2.0.co;2. [DOI] [PubMed] [Google Scholar]
- Rittenhouse H. G., Finlay J. A., Mikolajczyk S. D., Partin A. W. Human Kallikrein 2 (hK2) and prostate-specific antigen (PSA): two closely related, but distinct, kallikreins in the prostate. Crit Rev Clin Lab Sci. 1998 Aug;35(4):275–368. doi: 10.1080/10408369891234219. [DOI] [PubMed] [Google Scholar]
- Veldscholte J., Berrevoets C. A., Ris-Stalpers C., Kuiper G. G., Jenster G., Trapman J., Brinkmann A. O., Mulder E. The androgen receptor in LNCaP cells contains a mutation in the ligand binding domain which affects steroid binding characteristics and response to antiandrogens. J Steroid Biochem Mol Biol. 1992 Mar;41(3-8):665–669. doi: 10.1016/0960-0760(92)90401-4. [DOI] [PubMed] [Google Scholar]
- Webb V., Holmes A. Urological cancers: do early detection strategies exist? BJU Int. 2000 Dec;86(9):996–1000. doi: 10.1046/j.1464-410x.2000.00971.x. [DOI] [PubMed] [Google Scholar]
