Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 2001 Aug;85(3):453–462. doi: 10.1054/bjoc.2001.1939

Antagonists of retinoic acid receptors (RARs) are potent growth inhibitors of prostate carcinoma cells

L A Hammond 1, C H Van Krinks 2, J Durham 2, S E Tomkins 2, R D Burnett 3, E L Jones 1, R A S Chandraratna 3, G Brown 2
PMCID: PMC2364081  PMID: 11487280

Abstract

Novel synthetic antagonists of retinoic acid receptors (RARs) have been developed. To avoid interference by serum retinoids when testing these compounds, we established serum-free grown sub-lines (>3 years) of the prostate carcinoma lines LNCaP, PC3 and DU145. A high affinity pan-RAR antagonist (AGN194310, Kd for binding to RARs = 2–5 nM) inhibited colony formation (by 50%) by all three lines at 16–34 nM, and led to a transient accumulation of flask-cultured cells in G1 followed by apoptosis. AGN194310 is 12–22 fold more potent than all-trans retinoic acid (ATRA) against cell lines and also more potent in inhibiting the growth of primary prostate carcinoma cells. PC3 and DU145 cells do not express RARβ, and an antagonist with predominant activity at RARβ and RARγ (AGN194431) inhibited colony formation at concentrations (∼100 nM) commensurate with a Kd value of 70 nM at RARγ. An RARα antagonist (AGN194301) was less potent (IC50 ∼200 nM), but was more active than specific agonists of RARα and of βγ. A component(s) of serum and of LNCaP-conditioned medium diminishes the activity of antagonists: this factor is not the most likely candidates IGF-1 and EGF. In vitro studies of RAR antagonists together with data from RAR-null mice lead to the hypothesis that RARγ-regulated gene transcription is necessary for the survival and maintenance of prostate epithelium. The increased potencies of RAR antagonists, as compared with agonists, suggest that antagonists may be useful in the treatment of prostate carcinoma. © 2001 Cancer Research Campaign http://www.bjcancer.com

Keywords: RAR antagonists, retinoic acid receptors, prostate cancer, growth inhibition, apoptosis

Full Text

The Full Text of this article is available as a PDF (176.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Breitman T. R., Selonick S. E., Collins S. J. Induction of differentiation of the human promyelocytic leukemia cell line (HL-60) by retinoic acid. Proc Natl Acad Sci U S A. 1980 May;77(5):2936–2940. doi: 10.1073/pnas.77.5.2936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Campbell M. J., Park S., Uskokovic M. R., Dawson M. I., Koeffler H. P. Expression of retinoic acid receptor-beta sensitizes prostate cancer cells to growth inhibition mediated by combinations of retinoids and a 19-nor hexafluoride vitamin D3 analog. Endocrinology. 1998 Apr;139(4):1972–1980. doi: 10.1210/endo.139.4.5943. [DOI] [PubMed] [Google Scholar]
  3. Chambon P. The retinoid signaling pathway: molecular and genetic analyses. Semin Cell Biol. 1994 Apr;5(2):115–125. doi: 10.1006/scel.1994.1015. [DOI] [PubMed] [Google Scholar]
  4. Chan J. M., Stampfer M. J., Giovannucci E., Gann P. H., Ma J., Wilkinson P., Hennekens C. H., Pollak M. Plasma insulin-like growth factor-I and prostate cancer risk: a prospective study. Science. 1998 Jan 23;279(5350):563–566. doi: 10.1126/science.279.5350.563. [DOI] [PubMed] [Google Scholar]
  5. Chandraratna R. A. Tazarotene--first of a new generation of receptor-selective retinoids. Br J Dermatol. 1996 Oct;135 (Suppl 49):18–25. doi: 10.1111/j.1365-2133.1996.tb15662.x. [DOI] [PubMed] [Google Scholar]
  6. Fanjul A. N., Piedrafita F. J., Al-Shamma H., Pfahl M. Apoptosis induction and potent antiestrogen receptor-negative breast cancer activity in vivo by a retinoid antagonist. Cancer Res. 1998 Oct 15;58(20):4607–4610. [PubMed] [Google Scholar]
  7. Gao M., Ossowski L., Ferrari A. C. Activation of Rb and decline in androgen receptor protein precede retinoic acid-induced apoptosis in androgen-dependent LNCaP cells and their androgen-independent derivative. J Cell Physiol. 1999 Jun;179(3):336–346. doi: 10.1002/(SICI)1097-4652(199906)179:3<336::AID-JCP11>3.0.CO;2-Q. [DOI] [PubMed] [Google Scholar]
  8. Gorczyca W., Bigman K., Mittelman A., Ahmed T., Gong J., Melamed M. R., Darzynkiewicz Z. Induction of DNA strand breaks associated with apoptosis during treatment of leukemias. Leukemia. 1993 May;7(5):659–670. [PubMed] [Google Scholar]
  9. Gyftopoulos K., Perimenis P., Sotiropoulou-Bonikou G., Sakellaropoulos G., Varakis I., Barbalias G. A. Immunohistochemical detection of retinoic acid receptor-alpha in prostate carcinoma: correlation with proliferative activity and tumor grade. Int Urol Nephrol. 2000;32(2):263–269. doi: 10.1023/a:1007126332651. [DOI] [PubMed] [Google Scholar]
  10. Hedlund T. E., Moffatt K. A., Uskokovic M. R., Miller G. J. Three synthetic vitamin D analogues induce prostate-specific acid phosphatase and prostate-specific antigen while inhibiting the growth of human prostate cancer cells in a vitamin D receptor-dependent fashion. Clin Cancer Res. 1997 Aug;3(8):1331–1338. [PubMed] [Google Scholar]
  11. Hsieh T. C., Wu J. M. Effects of fenretinide (4-HPR) on prostate LNCaP cell growth, apoptosis, and prostate-specific gene expression. Prostate. 1997 Oct 1;33(2):97–104. doi: 10.1002/(sici)1097-0045(19971001)33:2<97::aid-pros3>3.0.co;2-j. [DOI] [PubMed] [Google Scholar]
  12. Johnson A. T., Wang L., Standeven A. M., Escobar M., Chandraratna R. A. Synthesis and biological activity of high-affinity retinoic acid receptor antagonists. Bioorg Med Chem. 1999 Jul;7(7):1321–1338. doi: 10.1016/s0968-0896(99)00055-3. [DOI] [PubMed] [Google Scholar]
  13. Kang J. X., Bell J., Leaf A., Beard R. L., Chandraratna R. A. Retinoic acid alters the intracellular trafficking of the mannose-6-phosphate/insulin-like growth factor II receptor and lysosomal enzymes. Proc Natl Acad Sci U S A. 1998 Nov 10;95(23):13687–13691. doi: 10.1073/pnas.95.23.13687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Klein E. S., Wang J. W., Khalifa B., Gavigan S. A., Chandraratna R. A. Recruitment of nuclear receptor corepressor and coactivator to the retinoic acid receptor by retinoid ligands. Influence of DNA-heterodimer interactions. J Biol Chem. 2000 Jun 23;275(25):19401–19408. doi: 10.1074/jbc.M002472200. [DOI] [PubMed] [Google Scholar]
  15. Landis S. H., Murray T., Bolden S., Wingo P. A. Cancer statistics, 1998. CA Cancer J Clin. 1998 Jan-Feb;48(1):6–29. doi: 10.3322/canjclin.48.1.6. [DOI] [PubMed] [Google Scholar]
  16. Liang J. Y., Fontana J. A., Rao J. N., Ordonez J. V., Dawson M. I., Shroot B., Wilber J. F., Feng P. Synthetic retinoid CD437 induces S-phase arrest and apoptosis in human prostate cancer cells LNCaP and PC-3. Prostate. 1999 Feb 15;38(3):228–236. doi: 10.1002/(sici)1097-0045(19990215)38:3<228::aid-pros7>3.0.co;2-t. [DOI] [PubMed] [Google Scholar]
  17. Lohnes D., Kastner P., Dierich A., Mark M., LeMeur M., Chambon P. Function of retinoic acid receptor gamma in the mouse. Cell. 1993 May 21;73(4):643–658. doi: 10.1016/0092-8674(93)90246-m. [DOI] [PubMed] [Google Scholar]
  18. Lotan Y., Xu X. C., Shalev M., Lotan R., Williams R., Wheeler T. M., Thompson T. C., Kadmon D. Differential expression of nuclear retinoid receptors in normal and malignant prostates. J Clin Oncol. 2000 Jan;18(1):116–121. doi: 10.1200/JCO.2000.18.1.116. [DOI] [PubMed] [Google Scholar]
  19. Lu X. P., Fanjul A., Picard N., Pfahl M., Rungta D., Nared-Hood K., Carter B., Piedrafita J., Tang S., Fabbrizio E. Novel retinoid-related molecules as apoptosis inducers and effective inhibitors of human lung cancer cells in vivo. Nat Med. 1997 Jun;3(6):686–690. doi: 10.1038/nm0697-686. [DOI] [PubMed] [Google Scholar]
  20. Lu X. P., Fanjul A., Picard N., Shroot B., Pfahl M. A selective retinoid with high activity against an androgen-resistant prostate cancer cell type. Int J Cancer. 1999 Jan 18;80(2):272–278. doi: 10.1002/(sici)1097-0215(19990118)80:2<272::aid-ijc17>3.0.co;2-x. [DOI] [PubMed] [Google Scholar]
  21. Lufkin T., Lohnes D., Mark M., Dierich A., Gorry P., Gaub M. P., LeMeur M., Chambon P. High postnatal lethality and testis degeneration in retinoic acid receptor alpha mutant mice. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7225–7229. doi: 10.1073/pnas.90.15.7225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mantzoros C. S., Tzonou A., Signorello L. B., Stampfer M., Trichopoulos D., Adami H. O. Insulin-like growth factor 1 in relation to prostate cancer and benign prostatic hyperplasia. Br J Cancer. 1997;76(9):1115–1118. doi: 10.1038/bjc.1997.520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nagpal S., Athanikar J., Chandraratna R. A. Separation of transactivation and AP1 antagonism functions of retinoic acid receptor alpha. J Biol Chem. 1995 Jan 13;270(2):923–927. doi: 10.1074/jbc.270.2.923. [DOI] [PubMed] [Google Scholar]
  24. Peehl D. M., Skowronski R. J., Leung G. K., Wong S. T., Stamey T. A., Feldman D. Antiproliferative effects of 1,25-dihydroxyvitamin D3 on primary cultures of human prostatic cells. Cancer Res. 1994 Feb 1;54(3):805–810. [PubMed] [Google Scholar]
  25. Peehl D. M., Wong S. T., Terris M. K., Stamey T. A. Culture of prostatic epithelial cells from ultrasound-guided needle biopsies. Prostate. 1991;19(2):141–147. doi: 10.1002/pros.2990190207. [DOI] [PubMed] [Google Scholar]
  26. Piedrafita F. J., Pfahl M. Retinoid-induced apoptosis and Sp1 cleavage occur independently of transcription and require caspase activation. Mol Cell Biol. 1997 Nov;17(11):6348–6358. doi: 10.1128/mcb.17.11.6348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pienta K. J., Nguyen N. M., Lehr J. E. Treatment of prostate cancer in the rat with the synthetic retinoid fenretinide. Cancer Res. 1993 Jan 15;53(2):224–226. [PubMed] [Google Scholar]
  28. Pietrzkowski Z., Mulholland G., Gomella L., Jameson B. A., Wernicke D., Baserga R. Inhibition of growth of prostatic cancer cell lines by peptide analogues of insulin-like growth factor 1. Cancer Res. 1993 Mar 1;53(5):1102–1106. [PubMed] [Google Scholar]
  29. Sherwood E. R., Van Dongen J. L., Wood C. G., Liao S., Kozlowski J. M., Lee C. Epidermal growth factor receptor activation in androgen-independent but not androgen-stimulated growth of human prostatic carcinoma cells. Br J Cancer. 1998 Mar;77(6):855–861. doi: 10.1038/bjc.1998.142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Teng M., Duong T. T., Johnson A. T., Klein E. S., Wang L., Khalifa B., Chandraratna R. A. Identification of highly potent retinoic acid receptor alpha-selective antagonists. J Med Chem. 1997 Aug 1;40(16):2445–2451. doi: 10.1021/jm9703911. [DOI] [PubMed] [Google Scholar]
  31. Wallington L. A., Durham J., Bunce C. M., Brown G. Growth of single HL60 cells in liquid culture: analysis of the influences of differentiative agents. Leuk Res. 1996 Oct;20(10):821–829. doi: 10.1016/s0145-2126(96)00040-9. [DOI] [PubMed] [Google Scholar]
  32. Xie S. P., James S. Y., Colston K. W. Vitamin D derivatives inhibit the mitogenic effects of IGF-I on MCF-7 human breast cancer cells. J Endocrinol. 1997 Sep;154(3):495–504. doi: 10.1677/joe.0.1540495. [DOI] [PubMed] [Google Scholar]
  33. de Vos S., Dawson M. I., Holden S., Le T., Wang A., Cho S. K., Chen D. L., Koeffler H. P. Effects of retinoid X receptor-selective ligands on proliferation of prostate cancer cells. Prostate. 1997 Jul 1;32(2):115–121. doi: 10.1002/(sici)1097-0045(19970701)32:2<115::aid-pros6>3.0.co;2-l. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES