Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 2001 Sep;85(5):752–757. doi: 10.1054/bjoc.2001.1954

Telomerase reverse transcriptase and telomeric-repeat binding factor protein 1 as regulators of telomerase activity in pancreatic cancer cells

T Yajima 1, A Yagihashi 1, H Kameshima 1, D Kobayashi 1, K Hirata 2, N Watanabe 1
PMCID: PMC2364122  PMID: 11531263

Abstract

Telomerase adds hexameric repeats of 5′-TTAGGG-3′ termed telomeres to ends of chromosomal DNA. This enzyme has been implicated in cellular immortalization and cellular senescence. Recently, a number of relevant genes have been cloned, including these encoding three major components of human telomerase: human telomerase RNA component (hTR), human telomerase reverse transcriptase (hTERT), and telomerase-associated protein-1 (TEP1). Also important are genes encoding human telomeric-repeat binding factor protein (TRF) 1 and 2. To clarify mechanisms regulating telomerase activity, we studied telomerase activity, the telomeric restriction fragment (TRF) length and gene expression of these telomerase components and the telomeric-repeat binding factor proteins in sequential observation following X-irradiation of cultured pancreatic cancer cells. We previously reported that PANC-1 cells are better able to tolerate thermal stress, antineoplastic drugs, and exposure to tumour necrosis factor than MIAPaCa-2 cells. MIAPaCa-2 and PANC-1 cells were exposed to X-irradiation, their telomerase activity was increased at 2 days and then decreased gradually. Of the three telomerase components, only hTERT mRNA expression showed parallel changes. TRF length was stable just before and after X-irradiation. Among binding factor proteins, TRF1 mRNA showed reciprocal changes possibly directed toward maintaining a stable telomere length. In this study, our results demonstrate that not only hTERT but also TRF1 are important regulator of telomerase activity. © 2001 Cancer Research Campaign http://www.bjcancer.com

Keywords: telomerase, hTERT, hTRF1, TRF, X-irradiation, pancreatic cancer cell

Full Text

The Full Text of this article is available as a PDF (88.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bodnar A. G., Ouellette M., Frolkis M., Holt S. E., Chiu C. P., Morin G. B., Harley C. B., Shay J. W., Lichtsteiner S., Wright W. E. Extension of life-span by introduction of telomerase into normal human cells. Science. 1998 Jan 16;279(5349):349–352. doi: 10.1126/science.279.5349.349. [DOI] [PubMed] [Google Scholar]
  2. Broccoli D., Smogorzewska A., Chong L., de Lange T. Human telomeres contain two distinct Myb-related proteins, TRF1 and TRF2. Nat Genet. 1997 Oct;17(2):231–235. doi: 10.1038/ng1097-231. [DOI] [PubMed] [Google Scholar]
  3. Chong L., van Steensel B., Broccoli D., Erdjument-Bromage H., Hanish J., Tempst P., de Lange T. A human telomeric protein. Science. 1995 Dec 8;270(5242):1663–1667. doi: 10.1126/science.270.5242.1663. [DOI] [PubMed] [Google Scholar]
  4. Counter C. M., Avilion A. A., LeFeuvre C. E., Stewart N. G., Greider C. W., Harley C. B., Bacchetti S. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J. 1992 May;11(5):1921–1929. doi: 10.1002/j.1460-2075.1992.tb05245.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Feng J., Funk W. D., Wang S. S., Weinrich S. L., Avilion A. A., Chiu C. P., Adams R. R., Chang E., Allsopp R. C., Yu J. The RNA component of human telomerase. Science. 1995 Sep 1;269(5228):1236–1241. doi: 10.1126/science.7544491. [DOI] [PubMed] [Google Scholar]
  6. Greider C. W., Blackburn E. H. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell. 1985 Dec;43(2 Pt 1):405–413. doi: 10.1016/0092-8674(85)90170-9. [DOI] [PubMed] [Google Scholar]
  7. Griffith J. D., Comeau L., Rosenfield S., Stansel R. M., Bianchi A., Moss H., de Lange T. Mammalian telomeres end in a large duplex loop. Cell. 1999 May 14;97(4):503–514. doi: 10.1016/s0092-8674(00)80760-6. [DOI] [PubMed] [Google Scholar]
  8. Hande M. P., Lansdorp P. M., Natarajan A. T. Induction of telomerase activity by in vivo X-irradiation of mouse splenocytes and its possible role in chromosome healing. Mutat Res. 1998 Aug 3;404(1-2):205–214. doi: 10.1016/s0027-5107(98)00115-8. [DOI] [PubMed] [Google Scholar]
  9. Harrington L., McPhail T., Mar V., Zhou W., Oulton R., Bass M. B., Arruda I., Robinson M. O. A mammalian telomerase-associated protein. Science. 1997 Feb 14;275(5302):973–977. doi: 10.1126/science.275.5302.973. [DOI] [PubMed] [Google Scholar]
  10. Hiyama E., Gollahon L., Kataoka T., Kuroi K., Yokoyama T., Gazdar A. F., Hiyama K., Piatyszek M. A., Shay J. W. Telomerase activity in human breast tumors. J Natl Cancer Inst. 1996 Jan 17;88(2):116–122. doi: 10.1093/jnci/88.2.116. [DOI] [PubMed] [Google Scholar]
  11. Hyeon Joo O., Hande M. P., Lansdorp P. M., Natarajan A. T. Induction of telomerase activity and chromosome aberrations in human tumour cell lines following X-irradiation. Mutat Res. 1998 Jun 5;401(1-2):121–131. doi: 10.1016/s0027-5107(97)00321-7. [DOI] [PubMed] [Google Scholar]
  12. Ito H., Kyo S., Kanaya T., Takakura M., Inoue M., Namiki M. Expression of human telomerase subunits and correlation with telomerase activity in urothelial cancer. Clin Cancer Res. 1998 Jul;4(7):1603–1608. [PubMed] [Google Scholar]
  13. Kim N. W., Piatyszek M. A., Prowse K. R., Harley C. B., West M. D., Ho P. L., Coviello G. M., Wright W. E., Weinrich S. L., Shay J. W. Specific association of human telomerase activity with immortal cells and cancer. Science. 1994 Dec 23;266(5193):2011–2015. doi: 10.1126/science.7605428. [DOI] [PubMed] [Google Scholar]
  14. Kim N. W., Wu F. Advances in quantification and characterization of telomerase activity by the telomeric repeat amplification protocol (TRAP). Nucleic Acids Res. 1997 Jul 1;25(13):2595–2597. doi: 10.1093/nar/25.13.2595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kolquist K. A., Ellisen L. W., Counter C. M., Meyerson M., Tan L. K., Weinberg R. A., Haber D. A., Gerald W. L. Expression of TERT in early premalignant lesions and a subset of cells in normal tissues. Nat Genet. 1998 Jun;19(2):182–186. doi: 10.1038/554. [DOI] [PubMed] [Google Scholar]
  16. Kyo S., Kanaya T., Takakura M., Tanaka M., Yamashita A., Inoue H., Inoue M. Expression of human telomerase subunits in ovarian malignant, borderline and benign tumors. Int J Cancer. 1999 Mar 15;80(6):804–809. doi: 10.1002/(sici)1097-0215(19990315)80:6<804::aid-ijc2>3.0.co;2-b. [DOI] [PubMed] [Google Scholar]
  17. Meyerson M., Counter C. M., Eaton E. N., Ellisen L. W., Steiner P., Caddle S. D., Ziaugra L., Beijersbergen R. L., Davidoff M. J., Liu Q. hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell. 1997 Aug 22;90(4):785–795. doi: 10.1016/s0092-8674(00)80538-3. [DOI] [PubMed] [Google Scholar]
  18. Nakamura T. M., Morin G. B., Chapman K. B., Weinrich S. L., Andrews W. H., Lingner J., Harley C. B., Cech T. R. Telomerase catalytic subunit homologs from fission yeast and human. Science. 1997 Aug 15;277(5328):955–959. doi: 10.1126/science.277.5328.955. [DOI] [PubMed] [Google Scholar]
  19. Nakayama J., Saito M., Nakamura H., Matsuura A., Ishikawa F. TLP1: a gene encoding a protein component of mammalian telomerase is a novel member of WD repeats family. Cell. 1997 Mar 21;88(6):875–884. doi: 10.1016/s0092-8674(00)81933-9. [DOI] [PubMed] [Google Scholar]
  20. Nakayama J., Tahara H., Tahara E., Saito M., Ito K., Nakamura H., Nakanishi T., Tahara E., Ide T., Ishikawa F. Telomerase activation by hTRT in human normal fibroblasts and hepatocellular carcinomas. Nat Genet. 1998 Jan;18(1):65–68. doi: 10.1038/ng0198-65. [DOI] [PubMed] [Google Scholar]
  21. Shay J. W., Bacchetti S. A survey of telomerase activity in human cancer. Eur J Cancer. 1997 Apr;33(5):787–791. doi: 10.1016/S0959-8049(97)00062-2. [DOI] [PubMed] [Google Scholar]
  22. Takakura M., Kyo S., Kanaya T., Tanaka M., Inoue M. Expression of human telomerase subunits and correlation with telomerase activity in cervical cancer. Cancer Res. 1998 Apr 1;58(7):1558–1561. [PubMed] [Google Scholar]
  23. Vaziri H., Benchimol S. Reconstitution of telomerase activity in normal human cells leads to elongation of telomeres and extended replicative life span. Curr Biol. 1998 Feb 26;8(5):279–282. doi: 10.1016/s0960-9822(98)70109-5. [DOI] [PubMed] [Google Scholar]
  24. Watanabe N., Tsuji N., Kobayashi D., Yamauchi N., Akiyama S., Sasaki H., Sato T., Okamoto T., Niitsu Y. Endogenous tumor necrosis factor functions as a resistant factor against hyperthermic cytotoxicity in pancreatic carcinoma cells via enhancement of the heart shock element-binding activity of heart shock factor 1. Chemotherapy. 1997 Nov-Dec;43(6):406–414. doi: 10.1159/000239599. [DOI] [PubMed] [Google Scholar]
  25. Watanabe N., Tsuji N., Tsuji Y., Sasaki H., Okamoto T., Akiyama S., Kobayashi D., Sato T., Yamauchi N., Niitsu Y. Endogenous tumor necrosis factor inhibits the cytotoxicity of exogenous tumor necrosis factor and adriamycin in pancreatic carcinoma cells. Pancreas. 1996 Nov;13(4):395–400. doi: 10.1097/00006676-199611000-00009. [DOI] [PubMed] [Google Scholar]
  26. Weinrich S. L., Pruzan R., Ma L., Ouellette M., Tesmer V. M., Holt S. E., Bodnar A. G., Lichtsteiner S., Kim N. W., Trager J. B. Reconstitution of human telomerase with the template RNA component hTR and the catalytic protein subunit hTRT. Nat Genet. 1997 Dec;17(4):498–502. doi: 10.1038/ng1297-498. [DOI] [PubMed] [Google Scholar]
  27. Yajima T., Yagihashi A., Kameshima H., Furuya D., Kobayashi D., Hirata K., Watanabe N. Establishment of quantitative reverse transcription--polymerase chain reaction assays for human telomerase-associated genes. Clin Chim Acta. 2000 Jan 5;290(2):117–127. doi: 10.1016/s0009-8981(99)00188-6. [DOI] [PubMed] [Google Scholar]
  28. Yajima T., Yagihashi A., Kameshima H., Kobayashi D., Furuya D., Hirata K., Watanabe N. Quantitative reverse transcription-PCR assay of the RNA component of human telomerase using the TaqMan fluorogenic detection system. Clin Chem. 1998 Dec;44(12):2441–2445. [PubMed] [Google Scholar]
  29. van Steensel B., Smogorzewska A., de Lange T. TRF2 protects human telomeres from end-to-end fusions. Cell. 1998 Feb 6;92(3):401–413. doi: 10.1016/s0092-8674(00)80932-0. [DOI] [PubMed] [Google Scholar]
  30. van Steensel B., de Lange T. Control of telomere length by the human telomeric protein TRF1. Nature. 1997 Feb 20;385(6618):740–743. doi: 10.1038/385740a0. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES