Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 2001 Sep;85(5):727–734. doi: 10.1054/bjoc.2001.1977

ALA- and ALA-hexylester-induced protoporphyrin IX fluorescence and distribution in multicell tumour spheroids

C E Bigelow 1, S Mitra 2, R Knuechel 4, T H Foster 1,3
PMCID: PMC2364128  PMID: 11531259

Abstract

Synthesis of protoporphyrin IX (PpIX) in intact murine mammary cancer cell spheroids is reported from optical sections obtained using a laser scanning confocal fluorescence microscope. EMT6 spheroids 275–350 μ m in diameter were incubated in 0.1–15 mM aminolevulinic acid (ALA) or 0.001–2 mM ALA-hexylester (h-ALA) to test the ability of both pro-drugs to diffuse into the spheroids and induce PpIX production. Spheroids incubated with ALA show significant fluorescence nonuniformity for all concentrations, with the outermost cells exhibiting greater porphyrin fluorescence. Comparable levels of fluorescence throughout the optical section are achieved with approximately 100-fold lower h-ALA concentrations, indicating that the interior cells maintain esterase activity and porphyrin synthesis and that h-ALA diffuses efficiently to the spheroid interior. Fluorescence gradients are less pronounced with h-ALA incubation, in part because of apparent saturation of esterase activity in the spheroid perimeter. Proliferating (Ki67 positive) and quiescent cell populations exhibit remarkably different h-ALA concentration dependencies. The incubation concentration resulting in maximum fluorescence with ALA is 10 mM, while the optimal concentration for h-ALA is 200-fold lower at 0.05 mM. Exceeding these optimal concentrations for both pro-drugs leads to an overall loss of fluorescence. © 2001 Cancer Research Campaign http://www.bjcancer.com

Keywords: aminolevulinic acid, aminolevulinic acid hexylester, protoporphyrin IX, multicell tumour spheroids, proliferation status

Full Text

The Full Text of this article is available as a PDF (115.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Foster T. H., Hartley D. F., Nichols M. G., Hilf R. Fluence rate effects in photodynamic therapy of multicell tumor spheroids. Cancer Res. 1993 Mar 15;53(6):1249–1254. [PubMed] [Google Scholar]
  2. Gaullier J. M., Berg K., Peng Q., Anholt H., Selbo P. K., Ma L. W., Moan J. Use of 5-aminolevulinic acid esters to improve photodynamic therapy on cells in culture. Cancer Res. 1997 Apr 15;57(8):1481–1486. [PubMed] [Google Scholar]
  3. Georgakoudi I., Keng P. C., Foster T. H. Hypoxia significantly reduces aminolaevulinic acid-induced protoporphyrin IX synthesis in EMT6 cells. Br J Cancer. 1999 Mar;79(9-10):1372–1377. doi: 10.1038/sj.bjc.6690220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Kloek J., Akkermans W., Beijersbergen van Henegouwen G. M. Derivatives of 5-aminolevulinic acid for photodynamic therapy: enzymatic conversion into protoporphyrin. Photochem Photobiol. 1998 Jan;67(1):150–154. [PubMed] [Google Scholar]
  5. Kloek J., Beijersbergen van Henegouwen Prodrugs of 5-aminolevulinic acid for photodynamic therapy. Photochem Photobiol. 1996 Dec;64(6):994–1000. doi: 10.1111/j.1751-1097.1996.tb01868.x. [DOI] [PubMed] [Google Scholar]
  6. Lange N., Jichlinski P., Zellweger M., Forrer M., Marti A., Guillou L., Kucera P., Wagnières G., van den Bergh H. Photodetection of early human bladder cancer based on the fluorescence of 5-aminolaevulinic acid hexylester-induced protoporphyrin IX: a pilot study. Br J Cancer. 1999 Apr;80(1-2):185–193. doi: 10.1038/sj.bjc.6690338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Marti A., Lange N., van den Bergh H., Sedmera D., Jichlinski P., Kucera P. Optimisation of the formation and distribution of protoporphyrin IX in the urothelium: an in vitro approach. J Urol. 1999 Aug;162(2):546–552. [PubMed] [Google Scholar]
  8. Nichols M. G., Foster T. H. Oxygen diffusion and reaction kinetics in the photodynamic therapy of multicell tumour spheroids. Phys Med Biol. 1994 Dec;39(12):2161–2181. doi: 10.1088/0031-9155/39/12/003. [DOI] [PubMed] [Google Scholar]
  9. Peng Q., Berg K., Moan J., Kongshaug M., Nesland J. M. 5-Aminolevulinic acid-based photodynamic therapy: principles and experimental research. Photochem Photobiol. 1997 Feb;65(2):235–251. doi: 10.1111/j.1751-1097.1997.tb08549.x. [DOI] [PubMed] [Google Scholar]
  10. Peng Q., Moan J., Warloe T., Iani V., Steen H. B., Bjørseth A., Nesland J. M. Build-up of esterified aminolevulinic-acid-derivative-induced porphyrin fluorescence in normal mouse skin. J Photochem Photobiol B. 1996 Jun;34(1):95–96. doi: 10.1016/1011-1344(95)07268-3. [DOI] [PubMed] [Google Scholar]
  11. Scholzen T., Gerdes J. The Ki-67 protein: from the known and the unknown. J Cell Physiol. 2000 Mar;182(3):311–322. doi: 10.1002/(SICI)1097-4652(200003)182:3<311::AID-JCP1>3.0.CO;2-9. [DOI] [PubMed] [Google Scholar]
  12. Uehlinger P., Zellweger M., Wagnières G., Juillerat-Jeanneret L., van den Bergh H., Lange N. 5-Aminolevulinic acid and its derivatives: physical chemical properties and protoporphyrin IX formation in cultured cells. J Photochem Photobiol B. 2000 Jan;54(1):72–80. doi: 10.1016/s1011-1344(99)00159-1. [DOI] [PubMed] [Google Scholar]
  13. Wyld L., Burn J. L., Reed M. W., Brown N. J. Factors affecting aminolaevulinic acid-induced generation of protoporphyrin IX. Br J Cancer. 1997;76(6):705–712. doi: 10.1038/bjc.1997.450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Wyld L., Reed M. W., Brown N. J. The influence of hypoxia and pH on aminolaevulinic acid-induced photodynamic therapy in bladder cancer cells in vitro. Br J Cancer. 1998 May;77(10):1621–1627. doi: 10.1038/bjc.1998.265. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES