Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 2001 Sep;85(5):735–740. doi: 10.1054/bjoc.2001.1956

Modulation of endogenous β-tubulin isotype expression as a result of human βIII cDNA transfection into prostate carcinoma cells

S Ranganathan 2, R A McCauley 2, D W Dexter 1, G R Hudes 2
PMCID: PMC2364133  PMID: 11531260

Abstract

Increases of individual β tubulin isotypes in antimicrotubule drug resistant cell lines have been reported by several laboratories. We have previously described elevations in βIII and βIVa isotypes in estramustine and paclitaxel resistant human prostate carcinoma cells. To investigate further the function of β tubulin isotypes in antimicrotubule drug response, human prostate carcinoma cells that normally have very low to undetectable levels of βIII were stably transfected with βIII cDNA in pZeoSV system. An 18 bp haemagglutinin (HA) epitope tag was added at the 3′ end prior to cloning into the vector. Cells were transfected with pZeoSV or pZeoSV-βIII plasmids and selected in the presence of Zeocin. Immunofluorescent staining of the transfectant cells have shown significant expression and incorporation of HA-tagged βIII tubulin into cellular microtubules. Quantitation of Western blots revealed the HA-tagged βIII levels to be approximately 7-fold higher than the vector control cells. RT-PCR analysis confirmed the increase at the transcript level and also revealed a collateral increase of βII and βIVb transcripts. Cell viability assays indicated that sensitivity of βIII transfected cells to various antimicrotubule agents was similar to vector transfected cells: IC50 values for estramustine, paclitaxel, colchicine and vinblastine were 4 μM, 4 nM, 22 nM and 2 nM, respectively for both cell lines. Thus, overexpression of βIII isotype in human prostate carcinoma cells by stable transfection failed to confer antimicrotubule drug resistance to these cells. Counterregulatory increases of endogenous βII and βIVb tubulin isotypes in these βIII transfected cells may be a compensatory mechanism used by the cells to overcome the effects of elevated βIII levels on the cellular microtubules. These results highlight the difficulty in isolating the contribution of single tubulin isotypes in drug response studies. © 2001 Cancer Research Campaign http://www.bjcancer.com

Keywords: tubulin, isotype, antimicrotubule agents, drug resistance, transfection

Full Text

The Full Text of this article is available as a PDF (128.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bachurski C. J., Theodorakis N. G., Coulson R. M., Cleveland D. W. An amino-terminal tetrapeptide specifies cotranslational degradation of beta-tubulin but not alpha-tubulin mRNAs. Mol Cell Biol. 1994 Jun;14(6):4076–4086. doi: 10.1128/mcb.14.6.4076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Banerjee A., Luduena R. F. Kinetics of colchicine binding to purified beta-tubulin isotypes from bovine brain. J Biol Chem. 1992 Jul 5;267(19):13335–13339. [PubMed] [Google Scholar]
  3. Banerjee A., Roach M. C., Trcka P., Luduena R. F. Preparation of a monoclonal antibody specific for the class IV isotype of beta-tubulin. Purification and assembly of alpha beta II, alpha beta III, and alpha beta IV tubulin dimers from bovine brain. J Biol Chem. 1992 Mar 15;267(8):5625–5630. [PubMed] [Google Scholar]
  4. Banerjee A., Roach M. C., Trcka P., Ludueña R. F. Increased microtubule assembly in bovine brain tubulin lacking the type III isotype of beta-tubulin. J Biol Chem. 1990 Jan 25;265(3):1794–1799. [PubMed] [Google Scholar]
  5. Blade K., Menick D. R., Cabral F. Overexpression of class I, II or IVb beta-tubulin isotypes in CHO cells is insufficient to confer resistance to paclitaxel. J Cell Sci. 1999 Jul;112(Pt 13):2213–2221. doi: 10.1242/jcs.112.13.2213. [DOI] [PubMed] [Google Scholar]
  6. Cabral F. R., Brady R. C., Schibler M. J. A mechanism of cellular resistance to drugs that interfere with microtubule assembly. Ann N Y Acad Sci. 1986;466:745–756. doi: 10.1111/j.1749-6632.1986.tb38456.x. [DOI] [PubMed] [Google Scholar]
  7. Derry W. B., Wilson L., Khan I. A., Luduena R. F., Jordan M. A. Taxol differentially modulates the dynamics of microtubules assembled from unfractionated and purified beta-tubulin isotypes. Biochemistry. 1997 Mar 25;36(12):3554–3562. doi: 10.1021/bi962724m. [DOI] [PubMed] [Google Scholar]
  8. Dhamodharan R., Jordan M. A., Thrower D., Wilson L., Wadsworth P. Vinblastine suppresses dynamics of individual microtubules in living interphase cells. Mol Biol Cell. 1995 Sep;6(9):1215–1229. doi: 10.1091/mbc.6.9.1215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Giannakakou P., Sackett D. L., Kang Y. K., Zhan Z., Buters J. T., Fojo T., Poruchynsky M. S. Paclitaxel-resistant human ovarian cancer cells have mutant beta-tubulins that exhibit impaired paclitaxel-driven polymerization. J Biol Chem. 1997 Jul 4;272(27):17118–17125. doi: 10.1074/jbc.272.27.17118. [DOI] [PubMed] [Google Scholar]
  10. Gonzalez-Garay M. L., Cabral F. Overexpression of an epitope-tagged beta-tubulin in Chinese hamster ovary cells causes an increase in endogenous alpha-tubulin synthesis. Cell Motil Cytoskeleton. 1995;31(4):259–272. doi: 10.1002/cm.970310403. [DOI] [PubMed] [Google Scholar]
  11. Haber M., Burkhart C. A., Regl D. L., Madafiglio J., Norris M. D., Horwitz S. B. Altered expression of M beta 2, the class II beta-tubulin isotype, in a murine J774.2 cell line with a high level of taxol resistance. J Biol Chem. 1995 Dec 29;270(52):31269–31275. doi: 10.1074/jbc.270.52.31269. [DOI] [PubMed] [Google Scholar]
  12. Jordan M. A., Toso R. J., Thrower D., Wilson L. Mechanism of mitotic block and inhibition of cell proliferation by taxol at low concentrations. Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9552–9556. doi: 10.1073/pnas.90.20.9552. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jordan M. A., Wendell K., Gardiner S., Derry W. B., Copp H., Wilson L. Mitotic block induced in HeLa cells by low concentrations of paclitaxel (Taxol) results in abnormal mitotic exit and apoptotic cell death. Cancer Res. 1996 Feb 15;56(4):816–825. [PubMed] [Google Scholar]
  14. Kavallaris M., Burkhart C. A., Horwitz S. B. Antisense oligonucleotides to class III beta-tubulin sensitize drug-resistant cells to Taxol. Br J Cancer. 1999 Jun;80(7):1020–1025. doi: 10.1038/sj.bjc.6690507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kavallaris M., Kuo D. Y., Burkhart C. A., Regl D. L., Norris M. D., Haber M., Horwitz S. B. Taxol-resistant epithelial ovarian tumors are associated with altered expression of specific beta-tubulin isotypes. J Clin Invest. 1997 Sep 1;100(5):1282–1293. doi: 10.1172/JCI119642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lu Q., Luduena R. F. In vitro analysis of microtubule assembly of isotypically pure tubulin dimers. Intrinsic differences in the assembly properties of alpha beta II, alpha beta III, and alpha beta IV tubulin dimers in the absence of microtubule-associated proteins. J Biol Chem. 1994 Jan 21;269(3):2041–2047. [PubMed] [Google Scholar]
  17. Lu Q., Luduena R. F. Removal of beta III isotype enhances taxol induced microtubule assembly. Cell Struct Funct. 1993 Jun;18(3):173–182. doi: 10.1247/csf.18.173. [DOI] [PubMed] [Google Scholar]
  18. Monzó M., Rosell R., Sánchez J. J., Lee J. S., O'Brate A., González-Larriba J. L., Alberola V., Lorenzo J. C., Núez L., Ro J. Y. Paclitaxel resistance in non-small-cell lung cancer associated with beta-tubulin gene mutations. J Clin Oncol. 1999 Jun;17(6):1786–1793. doi: 10.1200/JCO.1999.17.6.1786. [DOI] [PubMed] [Google Scholar]
  19. Panda D., Miller H. P., Banerjee A., Ludueña R. F., Wilson L. Microtubule dynamics in vitro are regulated by the tubulin isotype composition. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11358–11362. doi: 10.1073/pnas.91.24.11358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Panda D., Miller H. P., Islam K., Wilson L. Stabilization of microtubule dynamics by estramustine by binding to a novel site in tubulin: a possible mechanistic basis for its antitumor action. Proc Natl Acad Sci U S A. 1997 Sep 30;94(20):10560–10564. doi: 10.1073/pnas.94.20.10560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ranganathan S., Benetatos C. A., Colarusso P. J., Dexter D. W., Hudes G. R. Altered beta-tubulin isotype expression in paclitaxel-resistant human prostate carcinoma cells. Br J Cancer. 1998 Feb;77(4):562–566. doi: 10.1038/bjc.1998.91. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ranganathan S., Dexter D. W., Benetatos C. A., Chapman A. E., Tew K. D., Hudes G. R. Increase of beta(III)- and beta(IVa)-tubulin isotopes in human prostate carcinoma cells as a result of estramustine resistance. Cancer Res. 1996 Jun 1;56(11):2584–2589. [PubMed] [Google Scholar]
  23. Ranganathan S., Dexter D. W., Benetatos C. A., Hudes G. R. Cloning and sequencing of human betaIII-tubulin cDNA: induction of betaIII isotype in human prostate carcinoma cells by acute exposure to antimicrotubule agents. Biochim Biophys Acta. 1998 Jan 21;1395(2):237–245. doi: 10.1016/s0167-4781(97)00168-1. [DOI] [PubMed] [Google Scholar]
  24. Theodorakis N. G., Cleveland D. W. Physical evidence for cotranslational regulation of beta-tubulin mRNA degradation. Mol Cell Biol. 1992 Feb;12(2):791–799. doi: 10.1128/mcb.12.2.791. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES