Skip to main content
Infectious Diseases in Obstetrics and Gynecology logoLink to Infectious Diseases in Obstetrics and Gynecology
. 1996;4(3):152–158. doi: 10.1155/S1064744996000336

Immune Recognition of the 60kD Heat Shock Protein: Implications for Subsequent Fertility

Steven S Witkin 1,, Jan Jeremias 1, Andreas Neuer 1, Sami David 1, Isaac Kligman 1, Miklos Toth 1, Emily Willner 1, Keren Witkin 1
PMCID: PMC2364488  PMID: 18476087

Abstract

The 60kD heat shock protein (hsp60) is a highly conserved protein and a dominant antigen of most pathogenic bacteria. In some women, chronic or repeated upper genital tract infections with Chlamydia trachomatis, and possibly with other microorganisms, induces immune sensitization to epitopes of hsp60 that are present in both the microbial and human hsp60. Once a woman becomes sensitized to these conserved epitpes, any subsequent induction of human or bacterial hsp60 expression will reactivate hsp60-sensitized lymphocytes and initiate a pro-inflammatory immune response. Hsp60 is expressed during the early stages of pregnancy, by both the embryo and the maternal decidua. We examined, therefore, whether women who were sensitized to hsp60 experienced less successful pregnancy outcomes compared to women who were not sensitized to this antigen. In women undergoing in vitro fertilization (IVF), the presence of cervical IgA antibodies reactive with the C. trachomatis hsp60 correlated with implantation failure after embryo transfer. Further analysis revealed that an immunodominant epitope for these IgA antibodies was an hsp60 epitope shared between C. trachomatis and man. In subsequent studies of women not undergoing IVF, cervical IgA antibodies to the human hsp60 were identified in 13 of 91 reproductive age women. This antibody was most prevalent in those women with a history of primary infertility (p = 0.003). In addition, cervical anti-hsp60 IgA correlated with the detection of the pro-inflammatory cytokines interferon-γ (p = 0.001) and tumor necrosis factor-α (p = 0.02) in the cervix. Conversely, women with proven fertility had the highest prevalence of the anti-inflammatory cytokine, interleukin 10, in their cervices (p = 0.001). In an analysis of serum samples in a third study, women with a history of two or more consecutive first trimester spontaneous abortions had a higher prevalence (p = 0.01) of IgG antibodies to the human hsp60 (36.8%) than did age matched fertile women (11.1%) or women with primary infertility (11.8%). Immune sensitization to epitopes expressed by the human hsp60 may reduce the probability of a successful pregnancy outcome due to reactivation of hsp60-reactive lymphocytes, induction of a pro-inflammatory cytokine response and interference with early embryo development and/or implantation.

Full Text

The Full Text of this article is available as a PDF (550.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderton S. M., van der Zee R., Noordzij A., van Eden W. Differential mycobacterial 65-kDa heat shock protein T cell epitope recognition after adjuvant arthritis-inducing or protective immunization protocols. J Immunol. 1994 Apr 1;152(7):3656–3664. [PubMed] [Google Scholar]
  2. Arno J. N., Yuan Y., Cleary R. E., Morrison R. P. Serologic responses of infertile women to the 60-kd chlamydial heat shock protein (hsp60). Fertil Steril. 1995 Oct;64(4):730–735. doi: 10.1016/s0015-0282(16)57847-9. [DOI] [PubMed] [Google Scholar]
  3. Bensaude O., Morange M. Spontaneous high expression of heat-shock proteins in mouse embryonal carcinoma cells and ectoderm from day 8 mouse embryo. EMBO J. 1983;2(2):173–177. doi: 10.1002/j.1460-2075.1983.tb01401.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Elias D., Markovits D., Reshef T., van der Zee R., Cohen I. R. Induction and therapy of autoimmune diabetes in the non-obese diabetic (NOD/Lt) mouse by a 65-kDa heat shock protein. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1576–1580. doi: 10.1073/pnas.87.4.1576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Georgopoulos C., McFarland H. Heat shock proteins in multiple sclerosis and other autoimmune diseases. Immunol Today. 1993 Aug;14(8):373–375. doi: 10.1016/0167-5699(93)90135-8. [DOI] [PubMed] [Google Scholar]
  6. Heyborne K., Fu Y. X., Nelson A., Farr A., O'Brien R., Born W. Recognition of trophoblasts by gamma delta T cells. J Immunol. 1994 Oct 1;153(7):2918–2926. [PubMed] [Google Scholar]
  7. Hogervorst E. J., Boog C. J., Wagenaar J. P., Wauben M. H., Van der Zee R., Van Eden W. T cell reactivity to an epitope of the mycobacterial 65-kDa heat-shock protein (hsp 65) corresponds with arthritis susceptibility in rats and is regulated by hsp 65-specific cellular responses. Eur J Immunol. 1991 May;21(5):1289–1296. doi: 10.1002/eji.1830210529. [DOI] [PubMed] [Google Scholar]
  8. Kaufmann S. H. Heat shock proteins and the immune response. Immunol Today. 1990 Apr;11(4):129–136. doi: 10.1016/0167-5699(90)90050-j. [DOI] [PubMed] [Google Scholar]
  9. Lin H., Mosmann T. R., Guilbert L., Tuntipopipat S., Wegmann T. G. Synthesis of T helper 2-type cytokines at the maternal-fetal interface. J Immunol. 1993 Nov 1;151(9):4562–4573. [PubMed] [Google Scholar]
  10. Mincheva-Nilsson L., Baranov V., Yeung M. M., Hammarström S., Hammarström M. L. Immunomorphologic studies of human decidua-associated lymphoid cells in normal early pregnancy. J Immunol. 1994 Feb 15;152(4):2020–2032. [PubMed] [Google Scholar]
  11. Moore K. W., O'Garra A., de Waal Malefyt R., Vieira P., Mosmann T. R. Interleukin-10. Annu Rev Immunol. 1993;11:165–190. doi: 10.1146/annurev.iy.11.040193.001121. [DOI] [PubMed] [Google Scholar]
  12. Panchapakesan J., Daglis M., Gatenby P. Antibodies to 65 kDa and 70 kDa heat shock proteins in rheumatoid arthritis and systemic lupus erythematosus. Immunol Cell Biol. 1992 Oct;70(Pt 5):295–300. doi: 10.1038/icb.1992.37. [DOI] [PubMed] [Google Scholar]
  13. Thole J. E., Hindersson P., de Bruyn J., Cremers F., van der Zee J., de Cock H., Tommassen J., van Eden W., van Embden J. D. Antigenic relatedness of a strongly immunogenic 65 kDA mycobacterial protein antigen with a similarly sized ubiquitous bacterial common antigen. Microb Pathog. 1988 Jan;4(1):71–83. doi: 10.1016/0882-4010(88)90049-6. [DOI] [PubMed] [Google Scholar]
  14. Wegmann T. G., Lin H., Guilbert L., Mosmann T. R. Bidirectional cytokine interactions in the maternal-fetal relationship: is successful pregnancy a TH2 phenomenon? Immunol Today. 1993 Jul;14(7):353–356. doi: 10.1016/0167-5699(93)90235-D. [DOI] [PubMed] [Google Scholar]
  15. Witkin S. S. Immune pathogenesis of asymptomatic chlamydia trachomatis infections in the female genital tract. Infect Dis Obstet Gynecol. 1995;3(4):169–174. doi: 10.1155/S1064744995000548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Witkin S. S., Jeremias J., Toth M., Ledger W. J. Cell-mediated immune response to the recombinant 57-kDa heat-shock protein of Chlamydia trachomatis in women with salpingitis. J Infect Dis. 1993 Jun;167(6):1379–1383. doi: 10.1093/infdis/167.6.1379. [DOI] [PubMed] [Google Scholar]
  17. Witkin S. S., Jeremias J., Toth M., Ledger W. J. Proliferative response to conserved epitopes of the Chlamydia trachomatis and human 60-kilodalton heat-shock proteins by lymphocytes from women with salpingitis. Am J Obstet Gynecol. 1994 Aug;171(2):455–460. doi: 10.1016/0002-9378(94)90282-8. [DOI] [PubMed] [Google Scholar]
  18. Witkin S. S., Sultan K. M., Neal G. S., Jeremias J., Grifo J. A., Rosenwaks Z. Unsuspected Chlamydia trachomatis infection and in vitro fertilization outcome. Am J Obstet Gynecol. 1994 Nov;171(5):1208–1214. doi: 10.1016/0002-9378(94)90134-1. [DOI] [PubMed] [Google Scholar]
  19. Yi Y., Zhong G., Brunham R. C. Continuous B-cell epitopes in Chlamydia trachomatis heat shock protein 60. Infect Immun. 1993 Mar;61(3):1117–1120. doi: 10.1128/iai.61.3.1117-1120.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infectious Diseases in Obstetrics and Gynecology are provided here courtesy of Wiley

RESOURCES