Abstract
The aim of the present study was to verify whether a single oral dose of methylprednisolone could modulate the exercise-induced release of polymorphonuclear neutrophil (PMN) elastase and myeloperoxidase. Four healthy, male subjects were submitted to a 20 min downhill run (−20%) at 60% VO2 max, 3 h after oral absorption of a placebo or a single dose of 32 mg methylprednisolone. A marked neutrophilia (+103% of basal PMN count; p < 0.02) was observed 3 h after methylprednisolone ingestion. During both exercise trials, placebo and methylprednisolone, PMN counts were increased by 46% and 19% (p < 0.05), respectively. The running test caused marked and significant (p < 0.05) increases in plasma myeloperoxidase concentration (MPO). The magnitude of MPO changes was the same in the two trials (+110%). Exercise also resulted in significant changes in plasma elastase concentration (EL) in both experimental conditions (placebo: +104%, p < 0.05; methylprednisolone: +338%, p < 0.005). Plasma elastase levels reached at the end of exercise on methylprednisolone were significantly higher than after placebo (p < 0.05). A significant relationship was found between EL and PMN in methylprednisolone trial only (r = 0.72; l0 < 0.005). These results showed that the transient exercise-induced release of elastase and myeloperoxidase were not decreased by methylprednisolone.
Full Text
The Full Text of this article is available as a PDF (587.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ARIENS E. J., VAN ROSSUM J. M. pDx, pAx and pDx values in the analysis of pharmacodynamics. Arch Int Pharmacodyn Ther. 1957 Apr 1;110(2-3):275–299. [PubMed] [Google Scholar]
- Altan V. M., Oztürk Y., Yildizoğlu-Ari N., Nebigil C., Lafçi D., Ozçelikay A. T. Insulin action on different smooth muscle preparations. Gen Pharmacol. 1989;20(4):529–535. doi: 10.1016/0306-3623(89)90208-5. [DOI] [PubMed] [Google Scholar]
- Antonio A. The relaxing effect of bradykinin on intestinal smooth muscle. Br J Pharmacol Chemother. 1968 Jan;32(1):78–86. doi: 10.1111/j.1476-5381.1968.tb00431.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barabe J., Park W. K., Regoli D. Application of drug receptor theories to the analysis of the myotropic effects of bradykinin. Can J Physiol Pharmacol. 1975 Jun;53(3):345–353. doi: 10.1139/y75-050. [DOI] [PubMed] [Google Scholar]
- Boschcov P., Paiva A. C., Paiva T. B., Shimuta S. I. Further evidence for the existence of two receptor sites for bradykinin responsible for the diphasic effect in the rat isolated duodenum. Br J Pharmacol. 1984 Oct;83(2):591–600. doi: 10.1111/j.1476-5381.1984.tb16523.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burch R. M., Farmer S. G., Steranka L. R. Bradykinin receptor antagonists. Med Res Rev. 1990 Apr-Jun;10(2):237–269. doi: 10.1002/med.2610100204. [DOI] [PubMed] [Google Scholar]
- Den Hertog A., Nelemans A., Van den Akker J. The multiple action of bradykinin on smooth muscle of guinea-pig taenia caeci. Eur J Pharmacol. 1988 Jul 14;151(3):357–363. doi: 10.1016/0014-2999(88)90531-6. [DOI] [PubMed] [Google Scholar]
- Eisen V. Formation and function of kinins. Rheumatology. 1970;3(0):103–168. [PubMed] [Google Scholar]
- Faber D. B., Van der Meer C. A study of some bradykinin potentiating peptides derived from plasma proteins. Arch Int Pharmacodyn Ther. 1973 Oct;205(2):226–243. [PubMed] [Google Scholar]
- Farmer S. G., Burch R. M., Meeker S. A., Wilkins D. E. Evidence for a pulmonary B3 bradykinin receptor. Mol Pharmacol. 1989 Jul;36(1):1–8. [PubMed] [Google Scholar]
- HORTON E. W. Human urinary kinin excretion. Br J Pharmacol Chemother. 1959 Mar;14(1):125–132. doi: 10.1111/j.1476-5381.1959.tb00938.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huddart H., Latham H. Calcium regulation in ileal smooth muscle-II. Interaction of sodium and magnesium in calcium couterexchange. Gen Pharmacol. 1981;12(3):161–168. doi: 10.1016/0306-3623(81)90007-0. [DOI] [PubMed] [Google Scholar]
- Jarrett H. W., Penniston J. T. Partial purification of the Ca2+-Mg2+ ATPase activator from human erythrocytes: its similarity to the activator of 3':5' - cyclic nucleotide phosphodiesterase. Biochem Biophys Res Commun. 1977 Aug 22;77(4):1210–1216. doi: 10.1016/s0006-291x(77)80108-3. [DOI] [PubMed] [Google Scholar]
- Kim H. C., Raess B. U. Verapamil, diltiazem and nifedipine interactions with calmodulin stimulated (Ca2+ + Mg2+)-ATPase. Biochem Pharmacol. 1988 Mar 1;37(5):917–920. doi: 10.1016/0006-2952(88)90181-5. [DOI] [PubMed] [Google Scholar]
- Levin R. M., Weiss B. Specificity of the binding of trifluoperazine to the calcium-dependent activator of phosphodiesterase and to a series of other calcium-binding proteins. Biochim Biophys Acta. 1978 May 3;540(2):197–204. doi: 10.1016/0304-4165(78)90132-0. [DOI] [PubMed] [Google Scholar]
- Manning D. C., Vavrek R., Stewart J. M., Snyder S. H. Two bradykinin binding sites with picomolar affinities. J Pharmacol Exp Ther. 1986 May;237(2):504–512. [PubMed] [Google Scholar]
- Oztürk Y., Altinkurt O., Yildizoğlu-Ari N., Altan V. M. Evaluation of contraction time and recovery period as a parameter in the calcium antagonistic action on the K(+)-depolarized rat duodenum. J Pharm Pharmacol. 1990 Dec;42(12):874–877. doi: 10.1111/j.2042-7158.1990.tb07045.x. [DOI] [PubMed] [Google Scholar]
- Paegelow I., Reissmann S., Arold H., Raspe R. Charakterisierung der Bradykininwirkung am glatten Muskel unter besonderer Berücksichtigung der Latenzzeit. Acta Biol Med Ger. 1975;34(3):451–461. [PubMed] [Google Scholar]
- Paegelow I., Reissmann S., Vietinghoff G., Römer W., Arold H. Bradykinin action in the rat duodenum through the cyclic AMP system. Agents Actions. 1977 Oct;7(4):447–451. doi: 10.1007/BF01966851. [DOI] [PubMed] [Google Scholar]
- Plevin R., Owen P. J. Multiple B2 kinin receptors in mammalian tissues. Trends Pharmacol Sci. 1988 Nov;9(11):387–389. doi: 10.1016/0165-6147(88)90059-4. [DOI] [PubMed] [Google Scholar]
- Portilla D., Morrison A. R. Bradykinin-induced changes in inositol trisphosphate mass in MDCK cells. Biochem Biophys Res Commun. 1986 Oct 30;140(2):644–649. doi: 10.1016/0006-291x(86)90780-1. [DOI] [PubMed] [Google Scholar]
- Raess B. U., Gersten M. H. Calmodulin-stimulated plasma membrane (Ca2+ + Mg2+)-ATPase: inhibition by calcium channel entry blockers. Biochem Pharmacol. 1987 Aug 1;36(15):2455–2459. doi: 10.1016/0006-2952(87)90516-8. [DOI] [PubMed] [Google Scholar]
- Regoli D. Kinins, receptors, antagonists. Adv Exp Med Biol. 1986;198(Pt A):549–558. doi: 10.1007/978-1-4684-5143-6_73. [DOI] [PubMed] [Google Scholar]
- Rivera-Calimlim L., Hershey L. Neuroleptic concentrations and clinical response. Annu Rev Pharmacol Toxicol. 1984;24:361–386. doi: 10.1146/annurev.pa.24.040184.002045. [DOI] [PubMed] [Google Scholar]
- Saha J. K., Sengupta J. N., Goyal R. K. Effect of bradykinin on opossum esophageal longitudinal smooth muscle: evidence for novel bradykinin receptors. J Pharmacol Exp Ther. 1990 Mar;252(3):1012–1020. [PubMed] [Google Scholar]
- Snyder S. H., Yamamura H. I. Antidepressants and the muscarinic acetylcholine receptor. Arch Gen Psychiatry. 1977 Feb;34(2):236–239. doi: 10.1001/archpsyc.1977.01770140126014. [DOI] [PubMed] [Google Scholar]
- Wiemer G., Kaiser G., Palm D. Effects of Mg2+, Mn2+ and Ca2+ on adenylcyclase activity. Evidence for a metallic site. Naunyn Schmiedebergs Arch Pharmacol. 1978 Jun;303(2):145–152. doi: 10.1007/BF00508060. [DOI] [PubMed] [Google Scholar]
- Yeh Y. Y. Nicotinic acid reverses fasting ketosis by lowering the level of cyclic AMP. Life Sci. 1976 Jan 1;18(1):33–38. doi: 10.1016/0024-3205(76)90270-8. [DOI] [PubMed] [Google Scholar]