Skip to main content
Mediators of Inflammation logoLink to Mediators of Inflammation
. 1993;2(7):S17–S20. doi: 10.1155/S0962935193000699

Immunological responses in patients with tuberculosis and in vivo effects of acetyl-L-carnitine oral administration

Emilio Jirillo 1,, Maria Altamura 1, Carlo Marcuccio 1, Cosimo Tortorella 2, Claudio De Simone 3, Salvatore Antonaci 2
PMCID: PMC2365441  PMID: 18475563

Abstract

Tuberculosis (TBC) is characterized by a complex immune response which parallels the clinical course of the disease. In this respect, acquired resistance, delayed hypersensitivity reaction and anergy are the main types of immune reactivity to mycobacterial antigens. In view of the presence of nonspecific and specific immune deficits in TBC patients, a clinical trial was carried out in a group of 20 individuals with active pulmonary TBC by oral administration of acetyl-L-carnitine (ALC). This drug, which has been shown to possess immunomodulating activities, was able to upregulate the T-dependent antibacterial activity in TBC patients after 30 days' treatment, while the same activity decreased in patients receiving placebo only. On the other hand, ALC did not modify serum levels of tumour necrosis factor-α, in the same individuals. This cytokine plays a detrimental rather than beneficial role in TBC pathogenesis. In the light of these data, ALC seems to be a powerful immunomodulator in the course of Mycobacterium tuberculosis infection and other mycobacteriosis.

Full Text

The Full Text of this article is available as a PDF (440.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antonaci S., Jirillo E., Polignano A., Ventura M. T., Sabato R., Bonomo L. Evaluation of phagocyte functions, inflammatory lymphokine activities and in vitro antibody synthesis in patients with active and chronic pulmonary tuberculosis. Cytobios. 1991;67(270-271):135–144. [PubMed] [Google Scholar]
  2. Antonaci S., Tortorella C., De Simone C., Jirillo E. Role of bacterial lipopolysaccharides in the development of natural antibacterial activity mediated by human peripheral blood T lymphocytes. Int Rev Immunol. 1990;6(4):237–245. doi: 10.3109/08830189009056634. [DOI] [PubMed] [Google Scholar]
  3. Barnes P. F., Chatterjee D., Abrams J. S., Lu S., Wang E., Yamamura M., Brennan P. J., Modlin R. L. Cytokine production induced by Mycobacterium tuberculosis lipoarabinomannan. Relationship to chemical structure. J Immunol. 1992 Jul 15;149(2):541–547. [PubMed] [Google Scholar]
  4. Barnes P. F., Fong S. J., Brennan P. J., Twomey P. E., Mazumder A., Modlin R. L. Local production of tumor necrosis factor and IFN-gamma in tuberculous pleuritis. J Immunol. 1990 Jul 1;145(1):149–154. [PubMed] [Google Scholar]
  5. Boom W. H., Wallis R. S., Chervenak K. A. Human Mycobacterium tuberculosis-reactive CD4+ T-cell clones: heterogeneity in antigen recognition, cytokine production, and cytotoxicity for mononuclear phagocytes. Infect Immun. 1991 Aug;59(8):2737–2743. doi: 10.1128/iai.59.8.2737-2743.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bremer J. Carnitine--metabolism and functions. Physiol Rev. 1983 Oct;63(4):1420–1480. doi: 10.1152/physrev.1983.63.4.1420. [DOI] [PubMed] [Google Scholar]
  7. Butler L. D., Layman N. K., Riedl P. E., Cain R. L., Shellhaas J., Evans G. F., Zuckerman S. H. Neuroendocrine regulation of in vivo cytokine production and effects: I. In vivo regulatory networks involving the neuroendocrine system, interleukin-1 and tumor necrosis factor-alpha. J Neuroimmunol. 1989 Sep;24(1-2):143–153. doi: 10.1016/0165-5728(89)90108-2. [DOI] [PubMed] [Google Scholar]
  8. Daniel T. M., Debanne S. M. The serodiagnosis of tuberculosis and other mycobacterial diseases by enzyme-linked immunosorbent assay. Am Rev Respir Dis. 1987 May;135(5):1137–1151. doi: 10.1164/arrd.1987.135.5.1137. [DOI] [PubMed] [Google Scholar]
  9. Daniel T. M., Oxtoby M. J., Pinto E., Moreno E. The immune spectrum in patients with pulmonary tuberculosis. Am Rev Respir Dis. 1981 May;123(5):556–559. doi: 10.1164/arrd.1981.123.5.556. [DOI] [PubMed] [Google Scholar]
  10. De Simone C., Tzantzoglou S., Jirillo E., Marzo A., Vullo V., Martelli E. A. L-carnitine deficiency in AIDS patients. AIDS. 1992 Feb;6(2):203–205. doi: 10.1097/00002030-199202000-00011. [DOI] [PubMed] [Google Scholar]
  11. Dezube B. J., Pardee A. B., Beckett L. A., Ahlers C. M., Ecto L., Allen-Ryan J., Anisowicz A., Sager R., Crumpacker C. S. Cytokine dysregulation in AIDS: in vivo overexpression of mRNA of tumor necrosis factor-alpha and its correlation with that of the inflammatory cytokine GRO. J Acquir Immune Defic Syndr. 1992;5(11):1099–1104. [PubMed] [Google Scholar]
  12. Ellner J. J., Spagnuolo P. J., Schachter B. Z. Augmentation of selective monocyte functions in tuberculosis. J Infect Dis. 1981 Nov;144(5):391–398. doi: 10.1093/infdis/144.5.391. [DOI] [PubMed] [Google Scholar]
  13. Filley E. A., Rook G. A. Effect of mycobacteria on sensitivity to the cytotoxic effects of tumor necrosis factor. Infect Immun. 1991 Aug;59(8):2567–2572. doi: 10.1128/iai.59.8.2567-2572.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Foley N., Lambert C., McNicol M., Johnson N., Rook G. A. An inhibitor of the toxicity of tumour necrosis factor in the serum of patients with sarcoidosis, tuberculosis and Crohn's disease. Clin Exp Immunol. 1990 Jun;80(3):395–399. doi: 10.1111/j.1365-2249.1990.tb03299.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fong Y., Lowry S. F. Tumor necrosis factor in the pathophysiology of infection and sepsis. Clin Immunol Immunopathol. 1990 May;55(2):157–170. doi: 10.1016/0090-1229(90)90094-7. [DOI] [PubMed] [Google Scholar]
  16. Fujiwara H., Kleinhenz M. E., Wallis R. S., Ellner J. J. Increased interleukin-1 production and monocyte suppressor cell activity associated with human tuberculosis. Am Rev Respir Dis. 1986 Jan;133(1):73–77. doi: 10.1164/arrd.1986.133.1.73. [DOI] [PubMed] [Google Scholar]
  17. Jirillo E., Altamura M., Munno I., Pellegrino N. M., Sabato R., Di Fabio S., De Simone C. Effects of acetyl-L-carnitine oral administration on lymphocyte antibacterial activity and TNF-alpha levels in patients with active pulmonary tuberculosis. A randomized double blind versus placebo study. Immunopharmacol Immunotoxicol. 1991;13(1-2):135–146. doi: 10.3109/08923979109019696. [DOI] [PubMed] [Google Scholar]
  18. Kabelitz D., Bender A., Schondelmaier S., Schoel B., Kaufmann S. H. A large fraction of human peripheral blood gamma/delta + T cells is activated by Mycobacterium tuberculosis but not by its 65-kD heat shock protein. J Exp Med. 1990 Mar 1;171(3):667–679. doi: 10.1084/jem.171.3.667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kleinhenz M. E., Ellner J. J., Spagnuolo P. J., Daniel T. M. Suppression of lymphocyte responses by tuberculous plasma and mycobacterial arabinogalactan. Monocyte dependence and indomethacin reversibility. J Clin Invest. 1981 Jul;68(1):153–162. doi: 10.1172/JCI110231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Leveton C., Barnass S., Champion B., Lucas S., De Souza B., Nicol M., Banerjee D., Rook G. T-cell-mediated protection of mice against virulent Mycobacterium tuberculosis. Infect Immun. 1989 Feb;57(2):390–395. doi: 10.1128/iai.57.2.390-395.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mastroianni C. M., Paoletti F., Valenti C., Vullo V., Jirillo E., Delia S. Tumour necrosis factor (TNF-alpha) and neurological disorders in HIV infection. J Neurol Neurosurg Psychiatry. 1992 Mar;55(3):219–221. doi: 10.1136/jnnp.55.3.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Matsuyama T., Kobayashi N., Yamamoto N. Cytokines and HIV infection: is AIDS a tumor necrosis factor disease? AIDS. 1991 Dec;5(12):1405–1417. doi: 10.1097/00002030-199112000-00001. [DOI] [PubMed] [Google Scholar]
  23. Mohagheghpour N., Gelber R. H., Larrick J. W., Sasaki D. T., Brennan P. J., Engleman E. G. Defective cell-mediated immunity in leprosy: failure of T cells from lepromatous leprosy patients to respond to Mycobacterium leprae is associated with defective expression of interleukin 2 receptors and is not reconstituted by interleukin 2. J Immunol. 1985 Aug;135(2):1443–1449. [PubMed] [Google Scholar]
  24. Munk M. E., Schoel B., Modrow S., Karr R. W., Young R. A., Kaufmann S. H. T lymphocytes from healthy individuals with specificity to self-epitopes shared by the mycobacterial and human 65-kilodalton heat shock protein. J Immunol. 1989 Nov 1;143(9):2844–2849. [PubMed] [Google Scholar]
  25. Munno I., Pellegrino N. M., Fumo G., Barbieri G., Jirillo E. Studies on lymphokine production in lepromatous leprosy patients. Cytobios. 1990;62(250-251):141–147. [PubMed] [Google Scholar]
  26. Nogueira N., Kaplan G., Levy E., Sarno E. N., Kushner P., Granelli-Piperno A., Vieira L., Colomer Gould V., Levis W., Steinman R. Defective gamma interferon production in leprosy. Reversal with antigen and interleukin 2. J Exp Med. 1983 Dec 1;158(6):2165–2170. doi: 10.1084/jem.158.6.2165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. O'Brien R. L., Happ M. P., Dallas A., Palmer E., Kubo R., Born W. K. Stimulation of a major subset of lymphocytes expressing T cell receptor gamma delta by an antigen derived from Mycobacterium tuberculosis. Cell. 1989 May 19;57(4):667–674. doi: 10.1016/0092-8674(89)90135-9. [DOI] [PubMed] [Google Scholar]
  28. Onwubalili J. K., Scott G. M., Robinson J. A. Deficient immune interferon production in tuberculosis. Clin Exp Immunol. 1985 Feb;59(2):405–413. [PMC free article] [PubMed] [Google Scholar]
  29. Orme I. M., Miller E. S., Roberts A. D., Furney S. K., Griffin J. P., Dobos K. M., Chi D., Rivoire B., Brennan P. J. T lymphocytes mediating protection and cellular cytolysis during the course of Mycobacterium tuberculosis infection. Evidence for different kinetics and recognition of a wide spectrum of protein antigens. J Immunol. 1992 Jan 1;148(1):189–196. [PubMed] [Google Scholar]
  30. Radin R. C., Zeiss C. R., Phair J. P. Antibodies to purified protein derivative in different immunoglobulin classes in the diagnosis of tuberculosis in man. Int Arch Allergy Appl Immunol. 1983;70(1):25–29. doi: 10.1159/000233268. [DOI] [PubMed] [Google Scholar]
  31. Rook G. A., Attiyah R. A., Foley N. The role of cytokines in the immunopathology of tuberculosis, and the regulation of agalactosyl IgG. Lymphokine Res. 1989 Fall;8(3):323–328. [PubMed] [Google Scholar]
  32. Takashima T., Ueta C., Tsuyuguchi I., Kishimoto S. Production of tumor necrosis factor alpha by monocytes from patients with pulmonary tuberculosis. Infect Immun. 1990 Oct;58(10):3286–3292. doi: 10.1128/iai.58.10.3286-3292.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Toossi Z., Kleinhenz M. E., Ellner J. J. Defective interleukin 2 production and responsiveness in human pulmonary tuberculosis. J Exp Med. 1986 May 1;163(5):1162–1172. doi: 10.1084/jem.163.5.1162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Villa M. L., Rappocciolo G., Piazza P., Clerici E. The interference of antibiotics with antigen-specific antibody responses in man. Int J Immunopharmacol. 1986;8(7):805–809. doi: 10.1016/0192-0561(86)90018-4. [DOI] [PubMed] [Google Scholar]
  35. Wadee A. A., Clara A. M. A 25-kilodalton fraction from Mycobacterium tuberculosis that inhibits hexose monophosphate shunt activity, lysozyme release, and H2O2 production: reversal by gamma interferon. Infect Immun. 1989 Mar;57(3):864–869. doi: 10.1128/iai.57.3.864-869.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Youmans A. S., Youmans G. P. Effect of metabolic inhibitors on the formation of antibody to sheep erythrocytes, on development of delayed hypersensitivity, and on the immune response to infection with Mycobacterium tuberculosis in mice. Infect Immun. 1978 Jan;19(1):212–216. doi: 10.1128/iai.19.1.212-216.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Mediators of Inflammation are provided here courtesy of Wiley

RESOURCES