Skip to main content
Mediators of Inflammation logoLink to Mediators of Inflammation
. 1995 Mar;4(2):75–89. doi: 10.1155/S0962935195000135

Modulation of nitric oxide synthase activity in macrophages

P G Jorens 1,2, K E Matthys 1, H Bult 1,
PMCID: PMC2365621  PMID: 18475620

Abstract

L-Arginine is converted to the highly reactive and unstable nitric oxide (NO) and L-citrulline by an enzyme named nitric oxide synthase (NOS). NO decomposes into other nitrogen oxides such as nitrite (NO2-) and nitrate (NO2-), and in the presence of superoxide anion to the potent oxidizing agent peroxynitrite (ONOO). Activated rodent macrophages are capable of expressing an inducible form of this enzyme (iNOS) in response to appropriate stimuli, i.e., lipopolysaccharide (LPS) and interferon-γ (IFNγ). Other cytokines can modulate the induction of NO biosynthesis in macrophages. NO is a major effector molecule of the anti-microbial and cytotoxic activity of rodent macrophages against certain micro-organisms and tumour cells, respectively. The NO synthesizing pathway has been demonstrated in human monocytes and other cells, but its role in host defence seems to be accessory. A delicate functional balance between microbial stimuli, host-derived cytokines and hormones in the microenvironment regulates iNOS expression. This review will focus mainly on the known and proposed mechanisms of the regulation of iNOS induction, and on agents that can modulate NO release once the active enzyme has been expressed in the macrophage.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akubue P. I., Stohs S. J. Endrin-induced production of nitric oxide by rat peritoneal macrophages. Toxicol Lett. 1992 Sep;62(2-3):311–316. doi: 10.1016/0378-4274(92)90035-i. [DOI] [PubMed] [Google Scholar]
  2. Albina J. E., Abate J. A., Henry W. L., Jr Nitric oxide production is required for murine resident peritoneal macrophages to suppress mitogen-stimulated T cell proliferation. Role of IFN-gamma in the induction of the nitric oxide-synthesizing pathway. J Immunol. 1991 Jul 1;147(1):144–148. [PubMed] [Google Scholar]
  3. Albina J. E., Cui S., Mateo R. B., Reichner J. S. Nitric oxide-mediated apoptosis in murine peritoneal macrophages. J Immunol. 1993 Jun 1;150(11):5080–5085. [PubMed] [Google Scholar]
  4. Albina J. E., Mastrofrancesco B. Modulation of glucose metabolism in macrophages by products of nitric oxide synthase. Am J Physiol. 1993 Jun;264(6 Pt 1):C1594–C1599. doi: 10.1152/ajpcell.1993.264.6.C1594. [DOI] [PubMed] [Google Scholar]
  5. Albina J. E., Mills C. D., Henry W. L., Jr, Caldwell M. D. Temporal expression of different pathways of 1-arginine metabolism in healing wounds. J Immunol. 1990 May 15;144(10):3877–3880. [PubMed] [Google Scholar]
  6. Amber I. J., Hibbs J. B., Jr, Parker C. J., Johnson B. B., Taintor R. R., Vavrin Z. Activated macrophage conditioned medium: identification of the soluble factors inducing cytotoxicity and the L-arginine dependent effector mechanism. J Leukoc Biol. 1991 Jun;49(6):610–620. doi: 10.1002/jlb.49.6.610. [DOI] [PubMed] [Google Scholar]
  7. Andrade J., Conde M., Sobrino F., Bedoya F. J. Activation of peritoneal macrophages during the prediabetic phase in low-dose streptozotocin-treated mice. FEBS Lett. 1993 Jul 19;327(1):32–34. doi: 10.1016/0014-5793(93)81033-v. [DOI] [PubMed] [Google Scholar]
  8. Assreuy J., Cunha F. Q., Liew F. Y., Moncada S. Feedback inhibition of nitric oxide synthase activity by nitric oxide. Br J Pharmacol. 1993 Mar;108(3):833–837. doi: 10.1111/j.1476-5381.1993.tb12886.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Barratt G. M., Raddassi K., Petit J. F., Tenu J. P. MDP and LPS act synergistically to induce arginine-dependent cytostatic activity in rat alveolar macrophages. Int J Immunopharmacol. 1991;13(2-3):159–165. doi: 10.1016/0192-0561(91)90094-n. [DOI] [PubMed] [Google Scholar]
  10. Baydoun A. R., Mann G. E. Selective targeting of nitric oxide synthase inhibitors to system y+ in activated macrophages. Biochem Biophys Res Commun. 1994 Apr 29;200(2):726–731. doi: 10.1006/bbrc.1994.1511. [DOI] [PubMed] [Google Scholar]
  11. Benninghoff B., Lehmann V., Eck H. P., Dröge W. Production of citrulline and ornithine by interferon-gamma treated macrophages. Int Immunol. 1991 May;3(5):413–417. doi: 10.1093/intimm/3.5.413. [DOI] [PubMed] [Google Scholar]
  12. Bernard C., Merval R., Esposito B., Tedgui A. Elevated temperature accelerates and amplifies the induction of nitric oxide synthesis in rat macrophages. Eur J Pharmacol. 1994 Jan 3;270(1):115–118. doi: 10.1016/0926-6917(94)90087-6. [DOI] [PubMed] [Google Scholar]
  13. Billiar T. R., Curran R. D., Stuehr D. J., Ferrari F. K., Simmons R. L. Evidence that activation of Kupffer cells results in production of L-arginine metabolites that release cell-associated iron and inhibit hepatocyte protein synthesis. Surgery. 1989 Aug;106(2):364–372. [PubMed] [Google Scholar]
  14. Billiar T. R., Curran R. D., Stuehr D. J., West M. A., Bentz B. G., Simmons R. L. An L-arginine-dependent mechanism mediates Kupffer cell inhibition of hepatocyte protein synthesis in vitro. J Exp Med. 1989 Apr 1;169(4):1467–1472. doi: 10.1084/jem.169.4.1467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Birkland T. P., Sypek J. P., Wyler D. J. Soluble TNF and membrane TNF expressed on CD4+ T lymphocytes differ in their ability to activate macrophage antileishmanial defense. J Leukoc Biol. 1992 Mar;51(3):296–299. doi: 10.1002/jlb.51.3.296. [DOI] [PubMed] [Google Scholar]
  16. Bogdan C., Stenger S., Röllinghoff M., Solbach W. Cytokine interactions in experimental cutaneous leishmaniasis. Interleukin 4 synergizes with interferon-gamma to activate murine macrophages for killing of Leishmania major amastigotes. Eur J Immunol. 1991 Feb;21(2):327–333. doi: 10.1002/eji.1830210213. [DOI] [PubMed] [Google Scholar]
  17. Bogdan C., Vodovotz Y., Paik J., Xie Q. W., Nathan C. Traces of bacterial lipopolysaccharide suppress IFN-gamma-induced nitric oxide synthase gene expression in primary mouse macrophages. J Immunol. 1993 Jul 1;151(1):301–309. [PubMed] [Google Scholar]
  18. Bogle R. G., Baydoun A. R., Pearson J. D., Moncada S., Mann G. E. L-arginine transport is increased in macrophages generating nitric oxide. Biochem J. 1992 May 15;284(Pt 1):15–18. doi: 10.1042/bj2840015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Bogle R. G., Moncada S., Pearson J. D., Mann G. E. Identification of inhibitors of nitric oxide synthase that do not interact with the endothelial cell L-arginine transporter. Br J Pharmacol. 1992 Apr;105(4):768–770. doi: 10.1111/j.1476-5381.1992.tb09053.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Bogle R. G., Whitley G. S., Soo S. C., Johnstone A. P., Vallance P. Effect of anti-fungal imidazoles on mRNA levels and enzyme activity of inducible nitric oxide synthase. Br J Pharmacol. 1994 Apr;111(4):1257–1261. doi: 10.1111/j.1476-5381.1994.tb14881.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Bolton E. J., Jessup W., Stanley K. K., Dean R. T. Enhanced LDL oxidation by murine macrophage foam cells and their failure to secrete nitric oxide. Atherosclerosis. 1994 Apr;106(2):213–223. doi: 10.1016/0021-9150(94)90126-0. [DOI] [PubMed] [Google Scholar]
  22. Boscá L., Lazo P. A. Induction of nitric oxide release by MRC OX-44 (anti-CD53) through a protein kinase C-dependent pathway in rat macrophages. J Exp Med. 1994 Apr 1;179(4):1119–1126. doi: 10.1084/jem.179.4.1119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Bredt D. S., Hwang P. M., Glatt C. E., Lowenstein C., Reed R. R., Snyder S. H. Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature. 1991 Jun 27;351(6329):714–718. doi: 10.1038/351714a0. [DOI] [PubMed] [Google Scholar]
  24. Buchmüller-Rouiller Y., Betz-Corradin S., Mauël J. Differential effects of prostaglandins on macrophage activation induced by calcium ionophore A23187 or IFN-gamma. J Immunol. 1992 Feb 15;148(4):1171–1175. [PubMed] [Google Scholar]
  25. Buchmüller-Rouiller Y., Corradin S. B., Mauël J. Macrophage activation for intracellular killing as induced by a Ca2+ ionophore. Dependence on L-arginine-derived nitrogen oxidation products. Biochem J. 1992 Jun 1;284(Pt 2):387–392. doi: 10.1042/bj2840387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Buchmüller-Rouiller Y., Corradin S. B., Smith J., Mauël J. Effect of increasing intravesicular pH on nitrite production and leishmanicidal activity of activated macrophages. Biochem J. 1994 Jul 1;301(Pt 1):243–247. doi: 10.1042/bj3010243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Buchmüller-Rouiller Y., Schneider P., Betz-Corradin S., Smith J., Mauël J. 3-amino-1,2,4-triazole inhibits macrophage NO synthase. Biochem Biophys Res Commun. 1992 Feb 28;183(1):150–155. doi: 10.1016/0006-291x(92)91621-v. [DOI] [PubMed] [Google Scholar]
  28. Bulut V., Severn A., Liew F. Y. Nitric oxide production by murine macrophages is inhibited by prolonged elevation of cyclic AMP. Biochem Biophys Res Commun. 1993 Sep 15;195(2):1134–1138. doi: 10.1006/bbrc.1993.2162. [DOI] [PubMed] [Google Scholar]
  29. Calderón C., Huang Z. H., Gage D. A., Sotomayor E. M., Lopez D. M. Isolation of a nitric oxide inhibitor from mammary tumor cells and its characterization as phosphatidyl serine. J Exp Med. 1994 Sep 1;180(3):945–958. doi: 10.1084/jem.180.3.945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Cameron M. L., Granger D. L., Weinberg J. B., Kozumbo W. J., Koren H. S. Human alveolar and peritoneal macrophages mediate fungistasis independently of L-arginine oxidation to nitrite or nitrate. Am Rev Respir Dis. 1990 Dec;142(6 Pt 1):1313–1319. doi: 10.1164/ajrccm/142.6_Pt_1.1313. [DOI] [PubMed] [Google Scholar]
  31. Cenci E., Romani L., Mencacci A., Spaccapelo R., Schiaffella E., Puccetti P., Bistoni F. Interleukin-4 and interleukin-10 inhibit nitric oxide-dependent macrophage killing of Candida albicans. Eur J Immunol. 1993 May;23(5):1034–1038. doi: 10.1002/eji.1830230508. [DOI] [PubMed] [Google Scholar]
  32. Chaet M. S., Garcia V. F., Arya G., Ziegler M. M. Dietary fish oil enhances macrophage production of nitric oxide. J Surg Res. 1994 Jul;57(1):65–68. doi: 10.1006/jsre.1994.1111. [DOI] [PubMed] [Google Scholar]
  33. Chesrown S. E., Monnier J., Visner G., Nick H. S. Regulation of inducible nitric oxide synthase mRNA levels by LPS, INF-gamma, TGF-beta, and IL-10 in murine macrophage cell lines and rat peritoneal macrophages. Biochem Biophys Res Commun. 1994 Apr 15;200(1):126–134. doi: 10.1006/bbrc.1994.1424. [DOI] [PubMed] [Google Scholar]
  34. Cho H. J., Xie Q. W., Calaycay J., Mumford R. A., Swiderek K. M., Lee T. D., Nathan C. Calmodulin is a subunit of nitric oxide synthase from macrophages. J Exp Med. 1992 Aug 1;176(2):599–604. doi: 10.1084/jem.176.2.599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Cillari E., Arcoleo F., Dieli M., D'Agostino R., Gromo G., Leoni F., Milano S. The macrophage-activating tetrapeptide tuftsin induces nitric oxide synthesis and stimulates murine macrophages to kill Leishmania parasites in vitro. Infect Immun. 1994 Jun;62(6):2649–2652. doi: 10.1128/iai.62.6.2649-2652.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Corradin S. B., Buchmüller-Rouiller Y., Mauël J. Phagocytosis enhances murine macrophage activation by interferon-gamma and tumor necrosis factor-alpha. Eur J Immunol. 1991 Oct;21(10):2553–2558. doi: 10.1002/eji.1830211036. [DOI] [PubMed] [Google Scholar]
  37. Corradin S. B., Fasel N., Buchmüller-Rouiller Y., Ransijn A., Smith J., Mauël J. Induction of macrophage nitric oxide production by interferon-gamma and tumor necrosis factor-alpha is enhanced by interleukin-10. Eur J Immunol. 1993 Aug;23(8):2045–2048. doi: 10.1002/eji.1830230851. [DOI] [PubMed] [Google Scholar]
  38. Corradin S. B., Heumann D., Gallay P., Smith J., Mauël J., Glauser M. P. Bactericidal/permeability-increasing protein inhibits induction of macrophage nitric oxide production by lipopolysaccharide. J Infect Dis. 1994 Jan;169(1):105–111. doi: 10.1093/infdis/169.1.105. [DOI] [PubMed] [Google Scholar]
  39. Corradin S. B., Mauël J., Gallay P., Heumann D., Ulevitch R. J., Tobias P. S. Enhancement of murine macrophage binding of and response to bacterial lipopolysaccharide (LPS) by LPS-binding protein. J Leukoc Biol. 1992 Oct;52(4):363–368. doi: 10.1002/jlb.52.4.363. [DOI] [PubMed] [Google Scholar]
  40. Corraliza I. M., Campo M. L., Fuentes J. M., Campos-Portuguez S., Soler G. Parallel induction of nitric oxide and glucose-6-phosphate dehydrogenase in activated bone marrow derived macrophages. Biochem Biophys Res Commun. 1993 Oct 15;196(1):342–347. doi: 10.1006/bbrc.1993.2254. [DOI] [PubMed] [Google Scholar]
  41. Cox G. W., Melillo G., Chattopadhyay U., Mullet D., Fertel R. H., Varesio L. Tumor necrosis factor-alpha-dependent production of reactive nitrogen intermediates mediates IFN-gamma plus IL-2-induced murine macrophage tumoricidal activity. J Immunol. 1992 Nov 15;149(10):3290–3296. [PubMed] [Google Scholar]
  42. Croen K. D. Evidence for antiviral effect of nitric oxide. Inhibition of herpes simplex virus type 1 replication. J Clin Invest. 1993 Jun;91(6):2446–2452. doi: 10.1172/JCI116479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Cunha F. Q., Assreuy J., Moncada S., Liew F. Y. Phagocytosis and induction of nitric oxide synthase in murine macrophages. Immunology. 1993 Jul;79(3):408–411. [PMC free article] [PubMed] [Google Scholar]
  44. Cunha F. Q., Assreuy J., Moss D. W., Rees D., Leal L. M., Moncada S., Carrier M., O'Donnell C. A., Liew F. Y. Differential induction of nitric oxide synthase in various organs of the mouse during endotoxaemia: role of TNF-alpha and IL-1-beta. Immunology. 1994 Feb;81(2):211–215. [PMC free article] [PubMed] [Google Scholar]
  45. Cunha F. Q., Moncada S., Liew F. Y. Interleukin-10 (IL-10) inhibits the induction of nitric oxide synthase by interferon-gamma in murine macrophages. Biochem Biophys Res Commun. 1992 Feb 14;182(3):1155–1159. doi: 10.1016/0006-291x(92)91852-h. [DOI] [PubMed] [Google Scholar]
  46. Cunha F. Q., Moss D. W., Leal L. M., Moncada S., Liew F. Y. Induction of macrophage parasiticidal activity by Staphylococcus aureus and exotoxins through the nitric oxide synthesis pathway. Immunology. 1993 Apr;78(4):563–567. [PMC free article] [PubMed] [Google Scholar]
  47. Cunha F. Q., Weiser W. Y., David J. R., Moss D. W., Moncada S., Liew F. Y. Recombinant migration inhibitory factor induces nitric oxide synthase in murine macrophages. J Immunol. 1993 Mar 1;150(5):1908–1912. [PubMed] [Google Scholar]
  48. Daghigh F., Fukuto J. M., Ash D. E. Inhibition of rat liver arginase by an intermediate in NO biosynthesis, NG-hydroxy-L-arginine: implications for the regulation of nitric oxide biosynthesis by arginase. Biochem Biophys Res Commun. 1994 Jul 15;202(1):174–180. doi: 10.1006/bbrc.1994.1909. [DOI] [PubMed] [Google Scholar]
  49. Darley-Usmar V. M., Hogg N., O'Leary V. J., Wilson M. T., Moncada S. The simultaneous generation of superoxide and nitric oxide can initiate lipid peroxidation in human low density lipoprotein. Free Radic Res Commun. 1992;17(1):9–20. doi: 10.3109/10715769209061085. [DOI] [PubMed] [Google Scholar]
  50. Deng W., Thiel B., Tannenbaum C. S., Hamilton T. A., Stuehr D. J. Synergistic cooperation between T cell lymphokines for induction of the nitric oxide synthase gene in murine peritoneal macrophages. J Immunol. 1993 Jul 1;151(1):322–329. [PubMed] [Google Scholar]
  51. Denis M. Human monocytes/macrophages: NO or no NO? J Leukoc Biol. 1994 May;55(5):682–684. doi: 10.1002/jlb.55.5.682. [DOI] [PubMed] [Google Scholar]
  52. Denis M. Tumor necrosis factor and granulocyte macrophage-colony stimulating factor stimulate human macrophages to restrict growth of virulent Mycobacterium avium and to kill avirulent M. avium: killing effector mechanism depends on the generation of reactive nitrogen intermediates. J Leukoc Biol. 1991 Apr;49(4):380–387. doi: 10.1002/jlb.49.4.380. [DOI] [PubMed] [Google Scholar]
  53. Di Rosa M., Radomski M., Carnuccio R., Moncada S. Glucocorticoids inhibit the induction of nitric oxide synthase in macrophages. Biochem Biophys Res Commun. 1990 Nov 15;172(3):1246–1252. doi: 10.1016/0006-291x(90)91583-e. [DOI] [PubMed] [Google Scholar]
  54. Dileepan K. N., Lorsbach R. B., Stechschulte D. J. Mast cell granules inhibit macrophage-mediated lysis of mastocytoma cells (P815) and nitric oxide production. J Leukoc Biol. 1993 Apr;53(4):446–453. doi: 10.1002/jlb.53.4.446. [DOI] [PubMed] [Google Scholar]
  55. Ding A., Nathan C. F., Graycar J., Derynck R., Stuehr D. J., Srimal S. Macrophage deactivating factor and transforming growth factors-beta 1 -beta 2 and -beta 3 inhibit induction of macrophage nitrogen oxide synthesis by IFN-gamma. J Immunol. 1990 Aug 1;145(3):940–944. [PubMed] [Google Scholar]
  56. Doherty T. M., Kastelein R., Menon S., Andrade S., Coffman R. L. Modulation of murine macrophage function by IL-13. J Immunol. 1993 Dec 15;151(12):7151–7160. [PubMed] [Google Scholar]
  57. Doyle A. G., Herbein G., Montaner L. J., Minty A. J., Caput D., Ferrara P., Gordon S. Interleukin-13 alters the activation state of murine macrophages in vitro: comparison with interleukin-4 and interferon-gamma. Eur J Immunol. 1994 Jun;24(6):1441–1445. doi: 10.1002/eji.1830240630. [DOI] [PubMed] [Google Scholar]
  58. Drapier J. C., Hirling H., Wietzerbin J., Kaldy P., Kühn L. C. Biosynthesis of nitric oxide activates iron regulatory factor in macrophages. EMBO J. 1993 Sep;12(9):3643–3649. doi: 10.1002/j.1460-2075.1993.tb06038.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Drapier J. C., Wietzerbin J., Hibbs J. B., Jr Interferon-gamma and tumor necrosis factor induce the L-arginine-dependent cytotoxic effector mechanism in murine macrophages. Eur J Immunol. 1988 Oct;18(10):1587–1592. doi: 10.1002/eji.1830181018. [DOI] [PubMed] [Google Scholar]
  60. Dumarey C. H., Labrousse V., Rastogi N., Vargaftig B. B., Bachelet M. Selective Mycobacterium avium-induced production of nitric oxide by human monocyte-derived macrophages. J Leukoc Biol. 1994 Jul;56(1):36–40. doi: 10.1002/jlb.56.1.36. [DOI] [PubMed] [Google Scholar]
  61. Evans T., Carpenter A., Cohen J. Inducible nitric-oxide-synthase mRNA is transiently expressed and destroyed by a cycloheximide-sensitive process. Eur J Biochem. 1994 Jan 15;219(1-2):563–569. doi: 10.1111/j.1432-1033.1994.tb19972.x. [DOI] [PubMed] [Google Scholar]
  62. Fast D. J., Shannon B. J., Herriott M. J., Kennedy M. J., Rummage J. A., Leu R. W. Staphylococcal exotoxins stimulate nitric oxide-dependent murine macrophage tumoricidal activity. Infect Immun. 1991 Sep;59(9):2987–2993. doi: 10.1128/iai.59.9.2987-2993.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Feinstein D. L., Galea E., Reis D. J. Norepinephrine suppresses inducible nitric oxide synthase activity in rat astroglial cultures. J Neurochem. 1993 May;60(5):1945–1948. doi: 10.1111/j.1471-4159.1993.tb13425.x. [DOI] [PubMed] [Google Scholar]
  64. Feldman P. L., Griffith O. W., Hong H., Stuehr D. J. Irreversible inactivation of macrophage and brain nitric oxide synthase by L-NG-methylarginine requires NADPH-dependent hydroxylation. J Med Chem. 1993 Feb 19;36(4):491–496. doi: 10.1021/jm00056a009. [DOI] [PubMed] [Google Scholar]
  65. Foresta P., Ruggiero V., Albertoni C., Pacello L., Leoni B., Arrigoni Martelli E. In vitro activation of murine peritoneal exudate cells (PEC) and peritoneal macrophages by ST 789. Int J Immunopharmacol. 1992 Aug;14(6):1061–1068. doi: 10.1016/0192-0561(92)90151-a. [DOI] [PubMed] [Google Scholar]
  66. Fuchs D., Murr C., Reibnegger G., Weiss G., Werner E. R., Werner-Felmayer G., Wachter H. Nitric oxide synthase and antimicrobial armature of human macrophages. J Infect Dis. 1994 Jan;169(1):224–225. doi: 10.1093/infdis/169.1.224. [DOI] [PubMed] [Google Scholar]
  67. Furfine E. S., Harmon M. F., Paith J. E., Garvey E. P. Selective inhibition of constitutive nitric oxide synthase by L-NG-nitroarginine. Biochemistry. 1993 Aug 24;32(33):8512–8517. doi: 10.1021/bi00084a017. [DOI] [PubMed] [Google Scholar]
  68. Förstermann U., Schmidt H. H., Kohlhaas K. L., Murad F. Induced RAW 264.7 macrophages express soluble and particulate nitric oxide synthase: inhibition by transforming growth factor-beta. Eur J Pharmacol. 1992 Feb 13;225(2):161–165. doi: 10.1016/0922-4106(92)90096-e. [DOI] [PubMed] [Google Scholar]
  69. Gaillard T., Mülsch A., Busse R., Klein H., Decker K. Regulation of nitric oxide production by stimulated rat Kupffer cells. Pathobiology. 1991;59(4):280–283. doi: 10.1159/000163663. [DOI] [PubMed] [Google Scholar]
  70. Gazzinelli R. T., Oswald I. P., Hieny S., James S. L., Sher A. The microbicidal activity of interferon-gamma-treated macrophages against Trypanosoma cruzi involves an L-arginine-dependent, nitrogen oxide-mediated mechanism inhibitable by interleukin-10 and transforming growth factor-beta. Eur J Immunol. 1992 Oct;22(10):2501–2506. doi: 10.1002/eji.1830221006. [DOI] [PubMed] [Google Scholar]
  71. Gilbert R. S., Herschman H. R. Transforming growth factor beta differentially modulates the inducible nitric oxide synthase gene in distinct cell types. Biochem Biophys Res Commun. 1993 Aug 31;195(1):380–384. doi: 10.1006/bbrc.1993.2054. [DOI] [PubMed] [Google Scholar]
  72. Goodrum K. J., McCormick L. L., Schneider B. Group B streptococcus-induced nitric oxide production in murine macrophages is CR3 (CD11b/CD18) dependent. Infect Immun. 1994 Aug;62(8):3102–3107. doi: 10.1128/iai.62.8.3102-3107.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Green S. J., Chen T. Y., Crawford R. M., Nacy C. A., Morrison D. C., Meltzer M. S. Cytotoxic activity and production of toxic nitrogen oxides by macrophages treated with IFN-gamma and monoclonal antibodies against the 73-kDa lipopolysaccharide receptor. J Immunol. 1992 Sep 15;149(6):2069–2075. [PubMed] [Google Scholar]
  74. Green S. J., Mellouk S., Hoffman S. L., Meltzer M. S., Nacy C. A. Cellular mechanisms of nonspecific immunity to intracellular infection: cytokine-induced synthesis of toxic nitrogen oxides from L-arginine by macrophages and hepatocytes. Immunol Lett. 1990 Aug;25(1-3):15–19. doi: 10.1016/0165-2478(90)90083-3. [DOI] [PubMed] [Google Scholar]
  75. Green S. J., Nacy C. A., Meltzer M. S. Cytokine-induced synthesis of nitrogen oxides in macrophages: a protective host response to Leishmania and other intracellular pathogens. J Leukoc Biol. 1991 Jul;50(1):93–103. doi: 10.1002/jlb.50.1.93. [DOI] [PubMed] [Google Scholar]
  76. Griffiths M. J., Messent M., MacAllister R. J., Evans T. W. Aminoguanidine selectively inhibits inducible nitric oxide synthase. Br J Pharmacol. 1993 Nov;110(3):963–968. doi: 10.1111/j.1476-5381.1993.tb13907.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Griscavage J. M., Rogers N. E., Sherman M. P., Ignarro L. J. Inducible nitric oxide synthase from a rat alveolar macrophage cell line is inhibited by nitric oxide. J Immunol. 1993 Dec 1;151(11):6329–6337. [PubMed] [Google Scholar]
  78. Gross S. S., Stuehr D. J., Aisaka K., Jaffe E. A., Levi R., Griffith O. W. Macrophage and endothelial cell nitric oxide synthesis: cell-type selective inhibition by NG-aminoarginine, NG-nitroarginine and NG-methylarginine. Biochem Biophys Res Commun. 1990 Jul 16;170(1):96–103. doi: 10.1016/0006-291x(90)91245-n. [DOI] [PubMed] [Google Scholar]
  79. Hattori R., Kosuga K., Eizawa H., Sase K., Inoue R., Sunamoto M., Ichimori Y., Sato K., Mori T., Takahashi K. Stabilization of inducible nitric oxide synthase by monoclonal antibodies. Hybridoma. 1993 Dec;12(6):763–770. doi: 10.1089/hyb.1993.12.763. [DOI] [PubMed] [Google Scholar]
  80. Hauschildt S., Bassenge E., Bessler W., Busse R., Mülsch A. L-arginine-dependent nitric oxide formation and nitrite release in bone marrow-derived macrophages stimulated with bacterial lipopeptide and lipopolysaccharide. Immunology. 1990 Jul;70(3):332–337. [PMC free article] [PubMed] [Google Scholar]
  81. Hauschildt S., Bessler W. G., Scheipers P. Engagement of major histocompatibility complex class II molecules leads to nitrite production in bone marrow-derived macrophages. Eur J Immunol. 1993 Nov;23(11):2988–2992. doi: 10.1002/eji.1830231139. [DOI] [PubMed] [Google Scholar]
  82. Hauschildt S., Lückhoff A., Mülsch A., Kohler J., Bessler W., Busse R. Induction and activity of NO synthase in bone-marrow-derived macrophages are independent of Ca2+. Biochem J. 1990 Sep 1;270(2):351–356. doi: 10.1042/bj2700351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Hauschildt S., Scheipers P., Bessler W. G. Inhibitors of poly (ADP-ribose) polymerase suppress lipopolysaccharide-induced nitrite formation in macrophages. Biochem Biophys Res Commun. 1991 Sep 16;179(2):865–871. doi: 10.1016/0006-291x(91)91898-m. [DOI] [PubMed] [Google Scholar]
  84. Hecker M., Mitchell J. A., Harris H. J., Katsura M., Thiemermann C., Vane J. R. Endothelial cells metabolize NG-monomethyl-L-arginine to L-citrulline and subsequently to L-arginine. Biochem Biophys Res Commun. 1990 Mar 30;167(3):1037–1043. doi: 10.1016/0006-291x(90)90627-y. [DOI] [PubMed] [Google Scholar]
  85. Herriott M. J., Jiang H., Stewart C. A., Fast D. J., Leu R. W. Mechanistic differences between migration inhibitory factor (MIF) and IFN-gamma for macrophage activation. MIF and IFN-gamma synergize with lipid A to mediate migration inhibition but only IFN-gamma induces production of TNF-alpha and nitric oxide. J Immunol. 1993 May 15;150(10):4524–4531. [PubMed] [Google Scholar]
  86. Hevel J. M., White K. A., Marletta M. A. Purification of the inducible murine macrophage nitric oxide synthase. Identification as a flavoprotein. J Biol Chem. 1991 Dec 5;266(34):22789–22791. [PubMed] [Google Scholar]
  87. Hibbs J. B., Jr, Taintor R. R., Vavrin Z. Macrophage cytotoxicity: role for L-arginine deiminase and imino nitrogen oxidation to nitrite. Science. 1987 Jan 23;235(4787):473–476. doi: 10.1126/science.2432665. [DOI] [PubMed] [Google Scholar]
  88. Hibbs J. B., Jr, Taintor R. R., Vavrin Z., Rachlin E. M. Nitric oxide: a cytotoxic activated macrophage effector molecule. Biochem Biophys Res Commun. 1988 Nov 30;157(1):87–94. doi: 10.1016/s0006-291x(88)80015-9. [DOI] [PubMed] [Google Scholar]
  89. Hibbs J. B., Jr, Westenfelder C., Taintor R., Vavrin Z., Kablitz C., Baranowski R. L., Ward J. H., Menlove R. L., McMurry M. P., Kushner J. P. Evidence for cytokine-inducible nitric oxide synthesis from L-arginine in patients receiving interleukin-2 therapy. J Clin Invest. 1992 Mar;89(3):867–877. doi: 10.1172/JCI115666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Higuchi M., Higashi N., Taki H., Osawa T. Cytolytic mechanisms of activated macrophages. Tumor necrosis factor and L-arginine-dependent mechanisms act synergistically as the major cytolytic mechanisms of activated macrophages. J Immunol. 1990 Feb 15;144(4):1425–1431. [PubMed] [Google Scholar]
  91. Hogg N., Kalyanaraman B., Joseph J., Struck A., Parthasarathy S. Inhibition of low-density lipoprotein oxidation by nitric oxide. Potential role in atherogenesis. FEBS Lett. 1993 Nov 15;334(2):170–174. doi: 10.1016/0014-5793(93)81706-6. [DOI] [PubMed] [Google Scholar]
  92. Hortelano S., Genaro A. M., Boscá L. Phorbol esters induce nitric oxide synthase and increase arginine influx in cultured peritoneal macrophages. FEBS Lett. 1993 Apr 5;320(2):135–139. doi: 10.1016/0014-5793(93)80078-9. [DOI] [PubMed] [Google Scholar]
  93. Houdijk A. P., Adolfs M. J., Bonta I. L., De Jonge H. R. Atriopeptins and nitroprusside provoke opposite changes in cGMP and cAMP levels in human macrophages. Eur J Pharmacol. 1990 Apr 25;179(3):413–417. doi: 10.1016/0014-2999(90)90182-6. [DOI] [PubMed] [Google Scholar]
  94. Hughes S. R., Williams T. J., Brain S. D. Evidence that endogenous nitric oxide modulates oedema formation induced by substance P. Eur J Pharmacol. 1990 Dec 4;191(3):481–484. doi: 10.1016/0014-2999(90)94184-y. [DOI] [PubMed] [Google Scholar]
  95. Huot A. E., Hacker M. P. Role of reactive nitrogen intermediate production in alveolar macrophage-mediated cytostatic activity induced by bleomycin lung damage in rats. Cancer Res. 1990 Dec 15;50(24):7863–7866. [PubMed] [Google Scholar]
  96. Ignarro L. J., Byrns R. E., Buga G. M., Wood K. S. Endothelium-derived relaxing factor from pulmonary artery and vein possesses pharmacologic and chemical properties identical to those of nitric oxide radical. Circ Res. 1987 Dec;61(6):866–879. doi: 10.1161/01.res.61.6.866. [DOI] [PubMed] [Google Scholar]
  97. Imai T., Hirata Y., Kanno K., Marumo F. Induction of nitric oxide synthase by cyclic AMP in rat vascular smooth muscle cells. J Clin Invest. 1994 Feb;93(2):543–549. doi: 10.1172/JCI117005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. Imai Y., Kolb H., Burkart V. Nitric oxide production from macrophages is regulated by arachidonic acid metabolites. Biochem Biophys Res Commun. 1993 Nov 30;197(1):105–109. doi: 10.1006/bbrc.1993.2447. [DOI] [PubMed] [Google Scholar]
  99. Isobe K., Nakashima I. Abundant production of nitric oxide from murine macrophages by direct stimulation of tumor cells. Biochem Biophys Res Commun. 1993 Apr 30;192(2):499–504. doi: 10.1006/bbrc.1993.1443. [DOI] [PubMed] [Google Scholar]
  100. Iyengar R., Stuehr D. J., Marletta M. A. Macrophage synthesis of nitrite, nitrate, and N-nitrosamines: precursors and role of the respiratory burst. Proc Natl Acad Sci U S A. 1987 Sep;84(18):6369–6373. doi: 10.1073/pnas.84.18.6369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Jessup W., Dean R. T. Autoinhibition of murine macrophage-mediated oxidation of low-density lipoprotein by nitric oxide synthesis. Atherosclerosis. 1993 Jul;101(2):145–155. doi: 10.1016/0021-9150(93)90111-7. [DOI] [PubMed] [Google Scholar]
  102. Jessup W., Mohr D., Gieseg S. P., Dean R. T., Stocker R. The participation of nitric oxide in cell free- and its restriction of macrophage-mediated oxidation of low-density lipoprotein. Biochim Biophys Acta. 1992 Oct 13;1180(1):73–82. doi: 10.1016/0925-4439(92)90029-m. [DOI] [PubMed] [Google Scholar]
  103. Jiang H., Stewart C. A., Fast D. J., Leu R. W. Tumor target-derived soluble factor synergizes with IFN-gamma and IL-2 to activate macrophages for tumor necrosis factor and nitric oxide production to mediate cytotoxicity of the same target. J Immunol. 1992 Sep 15;149(6):2137–2146. [PubMed] [Google Scholar]
  104. Joly G. A., Schini V. B., Vanhoutte P. M. Balloon injury and interleukin-1 beta induce nitric oxide synthase activity in rat carotid arteries. Circ Res. 1992 Aug;71(2):331–338. doi: 10.1161/01.res.71.2.331. [DOI] [PubMed] [Google Scholar]
  105. Jorens P. G., Rosseneu M., Devreese A. M., Bult H., Marescau B., Herman A. G. Diminished capacity to release metabolites of nitric oxide synthase in macrophages loaded with oxidized low-density lipoproteins. Eur J Pharmacol. 1992 Feb 25;212(1):113–115. doi: 10.1016/0014-2999(92)90082-f. [DOI] [PubMed] [Google Scholar]
  106. Jorens P. G., Van Overeld F. J., Bult H., Vermeire P. A., Herman A. G. Serine-protease inhibitors modulate nitric oxide-synthase activity of alveolar macrophages. Agents Actions. 1992 Jul;36(3-4):243–247. [PubMed] [Google Scholar]
  107. Jorens P. G., Van Overveld F. J., Bult H., Vermeire P. A., Herman A. G. L-arginine-dependent production of nitrogen oxides by rat pulmonary macrophages. Eur J Pharmacol. 1991 Aug 6;200(2-3):205–209. doi: 10.1016/0014-2999(91)90573-9. [DOI] [PubMed] [Google Scholar]
  108. Jorens P. G., Van Overveld F. J., Bult H., Vermeire P. A., Herman A. G. Soybean trypsin inhibitor and beta-amylase induce alveolar macrophages to release nitrogen oxides. Biochem Pharmacol. 1992 Jul 22;44(2):387–390. doi: 10.1016/0006-2952(92)90025-e. [DOI] [PubMed] [Google Scholar]
  109. Jorens P. G., van Overveld F. J., Bult H., Vermeire P. A., Herman A. G. Muramyldipeptide and granulocyte-macrophage colony-stimulating factor enhance interferon-gamma-induced nitric oxide production by rat alveolar macrophages. Agents Actions. 1993 Jan;38(1-2):100–105. doi: 10.1007/BF02027220. [DOI] [PubMed] [Google Scholar]
  110. Jorens P. G., van Overveld F. J., Bult H., Vermeire P. A., Herman A. G. Pterins inhibit nitric oxide synthase activity in rat alveolar macrophages. Br J Pharmacol. 1992 Dec;107(4):1088–1091. doi: 10.1111/j.1476-5381.1992.tb13411.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  111. Kamijo R., Harada H., Matsuyama T., Bosland M., Gerecitano J., Shapiro D., Le J., Koh S. I., Kimura T., Green S. J. Requirement for transcription factor IRF-1 in NO synthase induction in macrophages. Science. 1994 Mar 18;263(5153):1612–1615. doi: 10.1126/science.7510419. [DOI] [PubMed] [Google Scholar]
  112. Karupiah G., Xie Q. W., Buller R. M., Nathan C., Duarte C., MacMicking J. D. Inhibition of viral replication by interferon-gamma-induced nitric oxide synthase. Science. 1993 Sep 10;261(5127):1445–1448. doi: 10.1126/science.7690156. [DOI] [PubMed] [Google Scholar]
  113. Keller R., Keist R., Joller P., Groscurth P. Mononuclear phagocytes from human bone marrow progenitor cells; morphology, surface phenotype, and functional properties of resting and activated cells. Clin Exp Immunol. 1993 Jan;91(1):176–182. doi: 10.1111/j.1365-2249.1993.tb03375.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  114. Kilbourn R., Lopez-Berestein G. Protease inhibitors block the macrophage-mediated inhibition of tumor cell mitochondrial respiration. J Immunol. 1990 Feb 1;144(3):1042–1045. [PubMed] [Google Scholar]
  115. Knowles R. G., Merrett M., Salter M., Moncada S. Differential induction of brain, lung and liver nitric oxide synthase by endotoxin in the rat. Biochem J. 1990 Sep 15;270(3):833–836. doi: 10.1042/bj2700833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Kobzik L., Bredt D. S., Lowenstein C. J., Drazen J., Gaston B., Sugarbaker D., Stamler J. S. Nitric oxide synthase in human and rat lung: immunocytochemical and histochemical localization. Am J Respir Cell Mol Biol. 1993 Oct;9(4):371–377. doi: 10.1165/ajrcmb/9.4.371. [DOI] [PubMed] [Google Scholar]
  117. Kohama Y., Iida K., Tanaka K., Semba T., Itoh M., Teramoto T., Tsujikawa K., Mimura T. Studies on thermophile products. VI. Activation of mouse peritoneal macrophages by bis(2-hydroxyethyl) trisulfide. Biol Pharm Bull. 1993 Oct;16(10):973–977. doi: 10.1248/bpb.16.973. [DOI] [PubMed] [Google Scholar]
  118. Koide M., Kawahara Y., Nakayama I., Tsuda T., Yokoyama M. Cyclic AMP-elevating agents induce an inducible type of nitric oxide synthase in cultured vascular smooth muscle cells. Synergism with the induction elicited by inflammatory cytokines. J Biol Chem. 1993 Nov 25;268(33):24959–24966. [PubMed] [Google Scholar]
  119. Kondo Y., Takano F., Hojo H. Inhibitory effect of bisbenzylisoquinoline alkaloids on nitric oxide production in activated macrophages. Biochem Pharmacol. 1993 Dec 3;46(11):1887–1892. doi: 10.1016/0006-2952(93)90628-a. [DOI] [PubMed] [Google Scholar]
  120. Kremsner P. G., Nüssler A., Neifer S., Chaves M. F., Bienzle U., Senaldi G., Grau G. E. Malaria antigen and cytokine-induced production of reactive nitrogen intermediates by murine macrophages: no relevance to the development of experimental cerebral malaria. Immunology. 1993 Feb;78(2):286–290. [PMC free article] [PubMed] [Google Scholar]
  121. Kubes P., Suzuki M., Granger D. N. Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4651–4655. doi: 10.1073/pnas.88.11.4651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. Kwon N. S., Nathan C. F., Stuehr D. J. Reduced biopterin as a cofactor in the generation of nitrogen oxides by murine macrophages. J Biol Chem. 1989 Dec 5;264(34):20496–20501. [PubMed] [Google Scholar]
  123. Lambert L. E., French J. F., Whitten J. P., Baron B. M., McDonald I. A. Characterization of cell selectivity of two novel inhibitors of nitric oxide synthesis. Eur J Pharmacol. 1992 May 27;216(1):131–134. doi: 10.1016/0014-2999(92)90221-o. [DOI] [PubMed] [Google Scholar]
  124. Lambert L. E., Whitten J. P., Baron B. M., Cheng H. C., Doherty N. S., McDonald I. A. Nitric oxide synthesis in the CNS endothelium and macrophages differs in its sensitivity to inhibition by arginine analogues. Life Sci. 1991;48(1):69–75. doi: 10.1016/0024-3205(91)90426-c. [DOI] [PubMed] [Google Scholar]
  125. Langermans J. A., Van der Hulst M. E., Nibbering P. H., Hiemstra P. S., Fransen L., Van Furth R. IFN-gamma-induced L-arginine-dependent toxoplasmastatic activity in murine peritoneal macrophages is mediated by endogenous tumor necrosis factor-alpha. J Immunol. 1992 Jan 15;148(2):568–574. [PubMed] [Google Scholar]
  126. Lavnikova N., Drapier J. C., Laskin D. L. A single exogenous stimulus activates resident rat macrophages for nitric oxide production and tumor cytotoxicity. J Leukoc Biol. 1993 Oct;54(4):322–328. doi: 10.1002/jlb.54.4.322. [DOI] [PubMed] [Google Scholar]
  127. Lelchuk R., Radomski M. W., Martin J. F., Moncada S. Constitutive and inducible nitric oxide synthases in human megakaryoblastic cells. J Pharmacol Exp Ther. 1992 Sep;262(3):1220–1224. [PubMed] [Google Scholar]
  128. Leone A. M., Palmer R. M., Knowles R. G., Francis P. L., Ashton D. S., Moncada S. Constitutive and inducible nitric oxide synthases incorporate molecular oxygen into both nitric oxide and citrulline. J Biol Chem. 1991 Dec 15;266(35):23790–23795. [PubMed] [Google Scholar]
  129. Leu R. W., Stewart C. A., Herriott M. J., Fast D. J., Rummage J. A. Inhibitor of C1q secretion suppresses the macrophage response to lipid A for nitric oxide but not for TNF production: evidence for a role of C1q in autocrine binding of TNF. Immunobiology. 1993 Jul;188(3):242–258. doi: 10.1016/S0171-2985(11)80233-0. [DOI] [PubMed] [Google Scholar]
  130. Li Y., Severn A., Rogers M. V., Palmer R. M., Moncada S., Liew F. Y. Catalase inhibits nitric oxide synthesis and the killing of intracellular Leishmania major in murine macrophages. Eur J Immunol. 1992 Feb;22(2):441–446. doi: 10.1002/eji.1830220223. [DOI] [PubMed] [Google Scholar]
  131. Liew F. Y., Li Y., Millott S. Tumor necrosis factor-alpha synergizes with IFN-gamma in mediating killing of Leishmania major through the induction of nitric oxide. J Immunol. 1990 Dec 15;145(12):4306–4310. [PubMed] [Google Scholar]
  132. Liew F. Y., Li Y., Millott S. Tumour necrosis factor (TNF-alpha) in leishmaniasis. II. TNF-alpha-induced macrophage leishmanicidal activity is mediated by nitric oxide from L-arginine. Immunology. 1990 Dec;71(4):556–559. [PMC free article] [PubMed] [Google Scholar]
  133. Liew F. Y., Li Y., Severn A., Millott S., Schmidt J., Salter M., Moncada S. A possible novel pathway of regulation by murine T helper type-2 (Th2) cells of a Th1 cell activity via the modulation of the induction of nitric oxide synthase on macrophages. Eur J Immunol. 1991 Oct;21(10):2489–2494. doi: 10.1002/eji.1830211027. [DOI] [PubMed] [Google Scholar]
  134. Liew F. Y. The role of nitric oxide in parasitic diseases. Ann Trop Med Parasitol. 1993 Dec;87(6):637–642. doi: 10.1080/00034983.1993.11812822. [DOI] [PubMed] [Google Scholar]
  135. Lorsbach R. B., Murphy W. J., Lowenstein C. J., Snyder S. H., Russell S. W. Expression of the nitric oxide synthase gene in mouse macrophages activated for tumor cell killing. Molecular basis for the synergy between interferon-gamma and lipopolysaccharide. J Biol Chem. 1993 Jan 25;268(3):1908–1913. [PubMed] [Google Scholar]
  136. Lowenstein C. J., Glatt C. S., Bredt D. S., Snyder S. H. Cloned and expressed macrophage nitric oxide synthase contrasts with the brain enzyme. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):6711–6715. doi: 10.1073/pnas.89.15.6711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  137. Lyons C. R., Orloff G. J., Cunningham J. M. Molecular cloning and functional expression of an inducible nitric oxide synthase from a murine macrophage cell line. J Biol Chem. 1992 Mar 25;267(9):6370–6374. [PubMed] [Google Scholar]
  138. MacAllister R. J., Whitley G. S., Vallance P. Effects of guanidino and uremic compounds on nitric oxide pathways. Kidney Int. 1994 Mar;45(3):737–742. doi: 10.1038/ki.1994.98. [DOI] [PubMed] [Google Scholar]
  139. Manthey C. L., Perera P. Y., Salkowski C. A., Vogel S. N. Taxol provides a second signal for murine macrophage tumoricidal activity. J Immunol. 1994 Jan 15;152(2):825–831. [PubMed] [Google Scholar]
  140. Marcinkiewicz J., Chain B. M. Differential regulation of cytokine production by nitric oxide. Immunology. 1993 Sep;80(1):146–150. [PMC free article] [PubMed] [Google Scholar]
  141. Marczin N., Papapetropoulos A., Jilling T., Catravas J. D. Prevention of nitric oxide synthase induction in vascular smooth muscle cells by microtubule depolymerizing agents. Br J Pharmacol. 1993 Jul;109(3):603–605. doi: 10.1111/j.1476-5381.1993.tb13613.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  142. Marletta M. A., Yoon P. S., Iyengar R., Leaf C. D., Wishnok J. S. Macrophage oxidation of L-arginine to nitrite and nitrate: nitric oxide is an intermediate. Biochemistry. 1988 Nov 29;27(24):8706–8711. doi: 10.1021/bi00424a003. [DOI] [PubMed] [Google Scholar]
  143. Marotta P., Sautebin L., Di Rosa M. Modulation of the induction of nitric oxide synthase by eicosanoids in the murine macrophage cell line J774. Br J Pharmacol. 1992 Nov;107(3):640–641. doi: 10.1111/j.1476-5381.1992.tb14499.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  144. Matthys K. E., Jorens P. G., Marescau B., Rosseneu M., Bult H., Herman A. G. Oxidized lipoproteins suppress nitric oxide synthase in macrophages: study of glucocorticoid receptor involvement. Mediators Inflamm. 1994;3(5):323–327. doi: 10.1155/S096293519400044X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  145. McCall T. B., Feelisch M., Palmer R. M., Moncada S. Identification of N-iminoethyl-L-ornithine as an irreversible inhibitor of nitric oxide synthase in phagocytic cells. Br J Pharmacol. 1991 Jan;102(1):234–238. doi: 10.1111/j.1476-5381.1991.tb12159.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  146. Mehta K., McQueen T., Tucker S., Pandita R., Aggarwal B. B. Inhibition by all-trans-retinoic acid of tumor necrosis factor and nitric oxide production by peritoneal macrophages. J Leukoc Biol. 1994 Mar;55(3):336–342. doi: 10.1002/jlb.55.3.336. [DOI] [PubMed] [Google Scholar]
  147. Melillo G., Cox G. W., Radzioch D., Varesio L. Picolinic acid, a catabolite of L-tryptophan, is a costimulus for the induction of reactive nitrogen intermediate production in murine macrophages. J Immunol. 1993 May 1;150(9):4031–4040. [PubMed] [Google Scholar]
  148. Meyer K. C., Cornwell R., Carlin J. M., Powers C., Irizarry A., Byrne G. I., Borden E. C. Effects of interferons beta or gamma on neopterin biosynthesis and tryptophan degradation by human alveolar macrophages in vitro: synergy with lipopolysaccharide. Am J Respir Cell Mol Biol. 1992 Jun;6(6):639–646. doi: 10.1165/ajrcmb/6.6.639. [DOI] [PubMed] [Google Scholar]
  149. Misko T. P., Moore W. M., Kasten T. P., Nickols G. A., Corbett J. A., Tilton R. G., McDaniel M. L., Williamson J. R., Currie M. G. Selective inhibition of the inducible nitric oxide synthase by aminoguanidine. Eur J Pharmacol. 1993 Mar 16;233(1):119–125. doi: 10.1016/0014-2999(93)90357-n. [DOI] [PubMed] [Google Scholar]
  150. Miwa M., Kong Z. L., Shinohara K., Watanabe M. Soybean trypsin inhibitor and beta-amylase stimulate macrophages. Biochem Biophys Res Commun. 1990 Nov 30;173(1):296–301. doi: 10.1016/s0006-291x(05)81056-3. [DOI] [PubMed] [Google Scholar]
  151. Moncada S., Palmer R. M., Higgs E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991 Jun;43(2):109–142. [PubMed] [Google Scholar]
  152. Moncada S., Palmer R. M. Inhibition of the induction of nitric oxide synthase by glucocorticoids: yet another explanation for their anti-inflammatory effects? Trends Pharmacol Sci. 1991 Apr;12(4):130–131. doi: 10.1016/0165-6147(91)90528-z. [DOI] [PubMed] [Google Scholar]
  153. Mulligan M. S., Moncada S., Ward P. A. Protective effects of inhibitors of nitric oxide synthase in immune complex-induced vasculitis. Br J Pharmacol. 1992 Dec;107(4):1159–1162. doi: 10.1111/j.1476-5381.1992.tb13423.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  154. Murray H. W., Teitelbaum R. F. L-arginine-dependent reactive nitrogen intermediates and the antimicrobial effect of activated human mononuclear phagocytes. J Infect Dis. 1992 Mar;165(3):513–517. doi: 10.1093/infdis/165.3.513. [DOI] [PubMed] [Google Scholar]
  155. Muñoz-Fernández M. A., Fernández M. A., Fresno M. Synergism between tumor necrosis factor-alpha and interferon-gamma on macrophage activation for the killing of intracellular Trypanosoma cruzi through a nitric oxide-dependent mechanism. Eur J Immunol. 1992 Feb;22(2):301–307. doi: 10.1002/eji.1830220203. [DOI] [PubMed] [Google Scholar]
  156. Nathan C. Nitric oxide as a secretory product of mammalian cells. FASEB J. 1992 Sep;6(12):3051–3064. [PubMed] [Google Scholar]
  157. Nelson B. J., Ralph P., Green S. J., Nacy C. A. Differential susceptibility of activated macrophage cytotoxic effector reactions to the suppressive effects of transforming growth factor-beta 1. J Immunol. 1991 Mar 15;146(6):1849–1857. [PubMed] [Google Scholar]
  158. Nichol C. A., Smith G. K., Duch D. S. Biosynthesis and metabolism of tetrahydrobiopterin and molybdopterin. Annu Rev Biochem. 1985;54:729–764. doi: 10.1146/annurev.bi.54.070185.003501. [DOI] [PubMed] [Google Scholar]
  159. Novogrodsky A., Vanichkin A., Patya M., Gazit A., Osherov N., Levitzki A. Prevention of lipopolysaccharide-induced lethal toxicity by tyrosine kinase inhibitors. Science. 1994 May 27;264(5163):1319–1322. doi: 10.1126/science.8191285. [DOI] [PubMed] [Google Scholar]
  160. Nussler A. K., Billiar T. R., Liu Z. Z., Morris S. M., Jr Coinduction of nitric oxide synthase and argininosuccinate synthetase in a murine macrophage cell line. Implications for regulation of nitric oxide production. J Biol Chem. 1994 Jan 14;269(2):1257–1261. [PubMed] [Google Scholar]
  161. Nussler A. K., Di Silvio M., Billiar T. R., Hoffman R. A., Geller D. A., Selby R., Madariaga J., Simmons R. L. Stimulation of the nitric oxide synthase pathway in human hepatocytes by cytokines and endotoxin. J Exp Med. 1992 Jul 1;176(1):261–264. doi: 10.1084/jem.176.1.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  162. Ochoa J. B., Udekwu A. O., Billiar T. R., Curran R. D., Cerra F. B., Simmons R. L., Peitzman A. B. Nitrogen oxide levels in patients after trauma and during sepsis. Ann Surg. 1991 Nov;214(5):621–626. doi: 10.1097/00000658-199111000-00013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  163. Oguchi S., Weisz A., Esumi H. Enhancement of inducible-type NO synthase gene transcription by protein synthesis inhibitors. Activation of an intracellular signal transduction pathway by low concentrations of cycloheximide. FEBS Lett. 1994 Feb 7;338(3):326–330. doi: 10.1016/0014-5793(94)80293-9. [DOI] [PubMed] [Google Scholar]
  164. Oswald I. P., Gazzinelli R. T., Sher A., James S. L. IL-10 synergizes with IL-4 and transforming growth factor-beta to inhibit macrophage cytotoxic activity. J Immunol. 1992 Jun 1;148(11):3578–3582. [PubMed] [Google Scholar]
  165. Oswald I. P., Wynn T. A., Sher A., James S. L. Interleukin 10 inhibits macrophage microbicidal activity by blocking the endogenous production of tumor necrosis factor alpha required as a costimulatory factor for interferon gamma-induced activation. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8676–8680. doi: 10.1073/pnas.89.18.8676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  166. Padgett E. L., Pruett S. B. Evaluation of nitrite production by human monocyte-derived macrophages. Biochem Biophys Res Commun. 1992 Jul 31;186(2):775–781. doi: 10.1016/0006-291x(92)90813-z. [DOI] [PubMed] [Google Scholar]
  167. Palmer R. M., Ashton D. S., Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature. 1988 Jun 16;333(6174):664–666. doi: 10.1038/333664a0. [DOI] [PubMed] [Google Scholar]
  168. Park E., Quinn M. R., Wright C. E., Schuller-Levis G. Taurine chloramine inhibits the synthesis of nitric oxide and the release of tumor necrosis factor in activated RAW 264.7 cells. J Leukoc Biol. 1993 Aug;54(2):119–124. doi: 10.1002/jlb.54.2.119. [DOI] [PubMed] [Google Scholar]
  169. Pellat-Deceunynck C., Wietzerbin J., Drapier J. C. Nicotinamide inhibits nitric oxide synthase mRNA induction in activated macrophages. Biochem J. 1994 Jan 1;297(Pt 1):53–58. doi: 10.1042/bj2970053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  170. Petit J. F., Phan-Bich L., Lemaire G., Martinache C., Lopez M. During their differentiation into macrophages, human monocytes acquire cytostatic activity independent of NO and TNF alpha. Res Immunol. 1993 May;144(4):277–298. doi: 10.1016/0923-2494(93)80107-a. [DOI] [PubMed] [Google Scholar]
  171. Pietraforte D., Tritarelli E., Testa U., Minetti M. gp120 HIV envelope glycoprotein increases the production of nitric oxide in human monocyte-derived macrophages. J Leukoc Biol. 1994 Feb;55(2):175–182. doi: 10.1002/jlb.55.2.175. [DOI] [PubMed] [Google Scholar]
  172. Punjabi C. J., Laskin J. D., Hwang S. M., MacEachern L., Laskin D. L. Enhanced production of nitric oxide by bone marrow cells and increased sensitivity to macrophage colony-stimulating factor (CSF) and granulocyte-macrophage CSF after benzene treatment of mice. Blood. 1994 Jun 1;83(11):3255–3263. [PubMed] [Google Scholar]
  173. Raddassi K., Petit J. F., Lemaire G. LPS-induced activation of primed murine peritoneal macrophages is modulated by prostaglandins and cyclic nucleotides. Cell Immunol. 1993 Jun;149(1):50–64. doi: 10.1006/cimm.1993.1135. [DOI] [PubMed] [Google Scholar]
  174. Reiling N., Ulmer A. J., Duchrow M., Ernst M., Flad H. D., Hauschildt S. Nitric oxide synthase: mRNA expression of different isoforms in human monocytes/macrophages. Eur J Immunol. 1994 Aug;24(8):1941–1944. doi: 10.1002/eji.1830240836. [DOI] [PubMed] [Google Scholar]
  175. Renier G., Skamene E., DeSanctis J., Radzioch D. Dietary n-3 polyunsaturated fatty acids prevent the development of atherosclerotic lesions in mice. Modulation of macrophage secretory activities. Arterioscler Thromb. 1993 Oct;13(10):1515–1524. doi: 10.1161/01.atv.13.10.1515. [DOI] [PubMed] [Google Scholar]
  176. Rojas A., Delgado R., Glaría L., Palacios M. Monocyte chemotactic protein-1 inhibits the induction of nitric oxide synthase in J774 cells. Biochem Biophys Res Commun. 1993 Oct 15;196(1):274–279. doi: 10.1006/bbrc.1993.2245. [DOI] [PubMed] [Google Scholar]
  177. Ruschmeyer D., Thude H., Mühlradt P. F. MDHM, a macrophage-activating product of Mycoplasma fermentans, stimulates murine macrophages to synthesize nitric oxide and become tumoricidal. FEMS Immunol Med Microbiol. 1993 Oct;7(3):223–229. doi: 10.1111/j.1574-695X.1993.tb00402.x. [DOI] [PubMed] [Google Scholar]
  178. Rutherford M. S., Schook L. B. Differential immunocompetence of macrophages derived using macrophage or granulocyte-macrophage colony-stimulating factor. J Leukoc Biol. 1992 Jan;51(1):69–76. doi: 10.1002/jlb.51.1.69. [DOI] [PubMed] [Google Scholar]
  179. Rutherford M. S., Schook L. B. Macrophage function in response to PGE2, L-arginine deprivation, and activation by colony-stimulating factors is dependent on hematopoietic stimulus. J Leukoc Biol. 1992 Aug;52(2):228–235. doi: 10.1002/jlb.52.2.228. [DOI] [PubMed] [Google Scholar]
  180. Ryoyama K., Nomura T., Nakamura S. Inhibition of macrophage nitric oxide production by arachidonate-cascade inhibitors. Cancer Immunol Immunother. 1993 Nov;37(6):385–391. doi: 10.1007/BF01526795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  181. Salvemini D., Misko T. P., Masferrer J. L., Seibert K., Currie M. G., Needleman P. Nitric oxide activates cyclooxygenase enzymes. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7240–7244. doi: 10.1073/pnas.90.15.7240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  182. Salvemini D., de Nucci G., Gryglewski R. J., Vane J. R. Human neutrophils and mononuclear cells inhibit platelet aggregation by releasing a nitric oxide-like factor. Proc Natl Acad Sci U S A. 1989 Aug;86(16):6328–6332. doi: 10.1073/pnas.86.16.6328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  183. Sands W. A., Clark J. S., Liew F. Y. The role of a phosphatidylcholine-specific phospholipase C in the production of diacylglycerol for nitric oxide synthesis in macrophages activated by IFN-gamma and LPS. Biochem Biophys Res Commun. 1994 Mar 15;199(2):461–466. doi: 10.1006/bbrc.1994.1251. [DOI] [PubMed] [Google Scholar]
  184. Sarih M., Souvannavong V., Adam A. Nitric oxide synthase induces macrophage death by apoptosis. Biochem Biophys Res Commun. 1993 Mar 15;191(2):503–508. doi: 10.1006/bbrc.1993.1246. [DOI] [PubMed] [Google Scholar]
  185. Sato H., Fujiwara M., Bannai S. Effect of lipopolysaccharide on transport and metabolism of arginine in mouse peritoneal macrophages. J Leukoc Biol. 1992 Aug;52(2):161–164. doi: 10.1002/jlb.52.2.161. [DOI] [PubMed] [Google Scholar]
  186. Schmidt H. H., Warner T. D., Nakane M., Förstermann U., Murad F. Regulation and subcellular location of nitrogen oxide synthases in RAW264.7 macrophages. Mol Pharmacol. 1992 Apr;41(4):615–624. [PubMed] [Google Scholar]
  187. Schmidt K., Klatt P., Mayer B. Uptake of nitric oxide synthase inhibitors by macrophage RAW 264.7 cells. Biochem J. 1994 Jul 15;301(Pt 2):313–316. doi: 10.1042/bj3010313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  188. Schoedon G., Schneemann M., Hofer S., Guerrero L., Blau N., Schaffner A. Regulation of the L-arginine-dependent and tetrahydrobiopterin-dependent biosynthesis of nitric oxide in murine macrophages. Eur J Biochem. 1993 Apr 15;213(2):833–839. doi: 10.1111/j.1432-1033.1993.tb17826.x. [DOI] [PubMed] [Google Scholar]
  189. Severn A., Wakelam M. J., Liew F. Y. The role of protein kinase C in the induction of nitric oxide synthesis by murine macrophages. Biochem Biophys Res Commun. 1992 Nov 16;188(3):997–1002. doi: 10.1016/0006-291x(92)91330-s. [DOI] [PubMed] [Google Scholar]
  190. Severn A., Xu D., Doyle J., Leal L. M., O'Donnell C. A., Brett S. J., Moss D. W., Liew F. Y. Pre-exposure of murine macrophages to lipopolysaccharide inhibits the induction of nitric oxide synthase and reduces leishmanicidal activity. Eur J Immunol. 1993 Jul;23(7):1711–1714. doi: 10.1002/eji.1830230747. [DOI] [PubMed] [Google Scholar]
  191. Shepherd V. L., Cowan H. B., Abdolrasulnia R., Vick S. Dexamethasone blocks the interferon-gamma-mediated downregulation of the macrophage mannose receptor. Arch Biochem Biophys. 1994 Aug 1;312(2):367–374. doi: 10.1006/abbi.1994.1321. [DOI] [PubMed] [Google Scholar]
  192. Sherman M. P., Aeberhard E. E., Wong V. Z., Griscavage J. M., Ignarro L. J. Pyrrolidine dithiocarbamate inhibits induction of nitric oxide synthase activity in rat alveolar macrophages. Biochem Biophys Res Commun. 1993 Mar 31;191(3):1301–1308. doi: 10.1006/bbrc.1993.1359. [DOI] [PubMed] [Google Scholar]
  193. Sherman M. P., Loro M. L., Wong V. Z., Tashkin D. P. Cytokine- and Pneumocystis carinii- induced L-arginine oxidation by murine and human pulmonary alveolar macrophages. J Protozool. 1991 Nov-Dec;38(6):234S–236S. [PubMed] [Google Scholar]
  194. Sibille Y., Merrill W. W., Cooper J. A., Jr, Polomski L., Gee J. B. Effects of a series of chloromethyl ketone protease inhibitors on superoxide release and the glutathione system in human polymorphonuclear leukocytes and alveolar macrophages. Am Rev Respir Dis. 1984 Jul;130(1):110–114. doi: 10.1164/arrd.1984.130.1.110. [DOI] [PubMed] [Google Scholar]
  195. Sicher S. C., Vazquez M. A., Lu C. Y. Inhibition of macrophage Ia expression by nitric oxide. J Immunol. 1994 Aug 1;153(3):1293–1300. [PubMed] [Google Scholar]
  196. Stadler J., Harbrecht B. G., Di Silvio M., Curran R. D., Jordan M. L., Simmons R. L., Billiar T. R. Endogenous nitric oxide inhibits the synthesis of cyclooxygenase products and interleukin-6 by rat Kupffer cells. J Leukoc Biol. 1993 Feb;53(2):165–172. doi: 10.1002/jlb.53.2.165. [DOI] [PubMed] [Google Scholar]
  197. Stuehr D. J., Fasehun O. A., Kwon N. S., Gross S. S., Gonzalez J. A., Levi R., Nathan C. F. Inhibition of macrophage and endothelial cell nitric oxide synthase by diphenyleneiodonium and its analogs. FASEB J. 1991 Jan;5(1):98–103. doi: 10.1096/fasebj.5.1.1703974. [DOI] [PubMed] [Google Scholar]
  198. Stuehr D. J., Gross S. S., Sakuma I., Levi R., Nathan C. F. Activated murine macrophages secrete a metabolite of arginine with the bioactivity of endothelium-derived relaxing factor and the chemical reactivity of nitric oxide. J Exp Med. 1989 Mar 1;169(3):1011–1020. doi: 10.1084/jem.169.3.1011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  199. Stuehr D. J., Kwon N. S., Gross S. S., Thiel B. A., Levi R., Nathan C. F. Synthesis of nitrogen oxides from L-arginine by macrophage cytosol: requirement for inducible and constitutive components. Biochem Biophys Res Commun. 1989 Jun 15;161(2):420–426. doi: 10.1016/0006-291x(89)92615-6. [DOI] [PubMed] [Google Scholar]
  200. Stuehr D. J., Kwon N. S., Nathan C. F. FAD and GSH participate in macrophage synthesis of nitric oxide. Biochem Biophys Res Commun. 1990 Apr 30;168(2):558–565. doi: 10.1016/0006-291x(90)92357-6. [DOI] [PubMed] [Google Scholar]
  201. Stuehr D. J., Marletta M. A. Induction of nitrite/nitrate synthesis in murine macrophages by BCG infection, lymphokines, or interferon-gamma. J Immunol. 1987 Jul 15;139(2):518–525. [PubMed] [Google Scholar]
  202. Stuehr D. J., Marletta M. A. Mammalian nitrate biosynthesis: mouse macrophages produce nitrite and nitrate in response to Escherichia coli lipopolysaccharide. Proc Natl Acad Sci U S A. 1985 Nov;82(22):7738–7742. doi: 10.1073/pnas.82.22.7738. [DOI] [PMC free article] [PubMed] [Google Scholar]
  203. Szabó C., Mitchell J. A., Gross S. S., Thiemermann C., Vane J. R. Nifedipine inhibits the induction of nitric oxide synthase by bacterial lipopolysaccharide. J Pharmacol Exp Ther. 1993 May;265(2):674–680. [PubMed] [Google Scholar]
  204. Szabó C., Southan G. J., Wood E., Thiemermann C., Vane J. R. Inhibition by spermine of the induction of nitric oxide synthase in J774.2 macrophages: requirement of a serum factor. Br J Pharmacol. 1994 Jun;112(2):355–356. doi: 10.1111/j.1476-5381.1994.tb13078.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  205. Szabó C., Thiemermann C., Vane J. R. Dihydropyridine antagonists and agonists of calcium channels inhibit the induction of nitric oxide synthase by endotoxin in cultured macrophages. Biochem Biophys Res Commun. 1993 Oct 29;196(2):825–830. doi: 10.1006/bbrc.1993.2323. [DOI] [PubMed] [Google Scholar]
  206. Szabó C., Wu C. C., Mitchell J. A., Gross S. S., Thiemermann C., Vane J. R. Platelet-activating factor contributes to the induction of nitric oxide synthase by bacterial lipopolysaccharide. Circ Res. 1993 Dec;73(6):991–999. doi: 10.1161/01.res.73.6.991. [DOI] [PubMed] [Google Scholar]
  207. Tayeh M. A., Marletta M. A. Macrophage oxidation of L-arginine to nitric oxide, nitrite, and nitrate. Tetrahydrobiopterin is required as a cofactor. J Biol Chem. 1989 Nov 25;264(33):19654–19658. [PubMed] [Google Scholar]
  208. Tayeh M. A., Marletta M. A. Macrophage oxidation of L-arginine to nitric oxide, nitrite, and nitrate. Tetrahydrobiopterin is required as a cofactor. J Biol Chem. 1989 Nov 25;264(33):19654–19658. [PubMed] [Google Scholar]
  209. Taylor M. W., Feng G. S. Relationship between interferon-gamma, indoleamine 2,3-dioxygenase, and tryptophan catabolism. FASEB J. 1991 Aug;5(11):2516–2522. [PubMed] [Google Scholar]
  210. Thomas G., Ando T., Verma K., Kagan E. Asbestos-induced nitric oxide production: synergistic effect with interferon-gamma. Ann N Y Acad Sci. 1994 May 28;725:207–212. doi: 10.1111/j.1749-6632.1994.tb39803.x. [DOI] [PubMed] [Google Scholar]
  211. Thomas S. R., Mohr D., Stocker R. Nitric oxide inhibits indoleamine 2,3-dioxygenase activity in interferon-gamma primed mononuclear phagocytes. J Biol Chem. 1994 May 20;269(20):14457–14464. [PubMed] [Google Scholar]
  212. Thomsen L. L., Ching L. M., Joseph W. R., Baguley B. C., Gavin J. B. Nitric oxide production in endotoxin-resistant C3H/HeJ mice stimulated with flavone-8-acetic acid and xanthenone-4-acetic acid analogues. Biochem Pharmacol. 1992 Jun 9;43(11):2401–2406. doi: 10.1016/0006-2952(92)90319-e. [DOI] [PubMed] [Google Scholar]
  213. Thomsen L. L., Ching L. M., Zhuang L., Gavin J. B., Baguley B. C. Tumor-dependent increased plasma nitrate concentrations as an indication of the antitumor effect of flavone-8-acetic acid and analogues in mice. Cancer Res. 1991 Jan 1;51(1):77–81. [PubMed] [Google Scholar]
  214. Tonetti M., Sturla L., Bistolfi T., Benatti U., De Flora A. Extracellular ATP potentiates nitric oxide synthase expression induced by lipopolysaccharide in RAW 264.7 murine macrophages. Biochem Biophys Res Commun. 1994 Aug 30;203(1):430–435. doi: 10.1006/bbrc.1994.2200. [DOI] [PubMed] [Google Scholar]
  215. Tracey W. R., Xue C., Klinghofer V., Barlow J., Pollock J. S., Förstermann U., Johns R. A. Immunochemical detection of inducible NO synthase in human lung. Am J Physiol. 1994 Jun;266(6 Pt 1):L722–L727. doi: 10.1152/ajplung.1994.266.6.L722. [DOI] [PubMed] [Google Scholar]
  216. Tucker S. D., Sivaramakrishnan M. R., Klostergaard J., Lopez-Berestein G. Independence of the pattern of early cytokine release from autoregulation by nitric oxide. J Leukoc Biol. 1991 Nov;50(5):509–516. doi: 10.1002/jlb.50.5.509. [DOI] [PubMed] [Google Scholar]
  217. Urioste S., Hall L. R., Telford S. R., 3rd, Titus R. G. Saliva of the Lyme disease vector, Ixodes dammini, blocks cell activation by a nonprostaglandin E2-dependent mechanism. J Exp Med. 1994 Sep 1;180(3):1077–1085. doi: 10.1084/jem.180.3.1077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  218. Verbeuren T. J., Bonhomme E., Laubie M., Simonet S. Evidence for induction of nonendothelial NO synthase in aortas of cholesterol-fed rabbits. J Cardiovasc Pharmacol. 1993 May;21(5):841–845. doi: 10.1097/00005344-199305000-00023. [DOI] [PubMed] [Google Scholar]
  219. Vodovotz Y., Bogdan C., Paik J., Xie Q. W., Nathan C. Mechanisms of suppression of macrophage nitric oxide release by transforming growth factor beta. J Exp Med. 1993 Aug 1;178(2):605–613. doi: 10.1084/jem.178.2.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  220. Vodovotz Y., Kwon N. S., Pospischil M., Manning J., Paik J., Nathan C. Inactivation of nitric oxide synthase after prolonged incubation of mouse macrophages with IFN-gamma and bacterial lipopolysaccharide. J Immunol. 1994 Apr 15;152(8):4110–4118. [PubMed] [Google Scholar]
  221. Weiss G., Goossen B., Doppler W., Fuchs D., Pantopoulos K., Werner-Felmayer G., Wachter H., Hentze M. W. Translational regulation via iron-responsive elements by the nitric oxide/NO-synthase pathway. EMBO J. 1993 Sep;12(9):3651–3657. doi: 10.1002/j.1460-2075.1993.tb06039.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  222. Weiss G., Werner-Felmayer G., Werner E. R., Grünewald K., Wachter H., Hentze M. W. Iron regulates nitric oxide synthase activity by controlling nuclear transcription. J Exp Med. 1994 Sep 1;180(3):969–976. doi: 10.1084/jem.180.3.969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  223. Weisz A., Oguchi S., Cicatiello L., Esumi H. Dual mechanism for the control of inducible-type NO synthase gene expression in macrophages during activation by interferon-gamma and bacterial lipopolysaccharide. Transcriptional and post-transcriptional regulation. J Biol Chem. 1994 Mar 18;269(11):8324–8333. [PubMed] [Google Scholar]
  224. Werner-Felmayer G., Werner E. R., Fuchs D., Hausen A., Reibnegger G., Wachter H. Tetrahydrobiopterin-dependent formation of nitrite and nitrate in murine fibroblasts. J Exp Med. 1990 Dec 1;172(6):1599–1607. doi: 10.1084/jem.172.6.1599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  225. Witztum J. L., Steinberg D. Role of oxidized low density lipoprotein in atherogenesis. J Clin Invest. 1991 Dec;88(6):1785–1792. doi: 10.1172/JCI115499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  226. Wolff D. J., Gribin B. J. The inhibition of the constitutive and inducible nitric oxide synthase isoforms by indazole agents. Arch Biochem Biophys. 1994 Jun;311(2):300–306. doi: 10.1006/abbi.1994.1241. [DOI] [PubMed] [Google Scholar]
  227. Wu G. Y., Brosnan J. T. Macrophages can convert citrulline into arginine. Biochem J. 1992 Jan 1;281(Pt 1):45–48. doi: 10.1042/bj2810045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  228. Xie Q. W., Cho H. J., Calaycay J., Mumford R. A., Swiderek K. M., Lee T. D., Ding A., Troso T., Nathan C. Cloning and characterization of inducible nitric oxide synthase from mouse macrophages. Science. 1992 Apr 10;256(5054):225–228. doi: 10.1126/science.1373522. [DOI] [PubMed] [Google Scholar]
  229. Xie Q. W., Kashiwabara Y., Nathan C. Role of transcription factor NF-kappa B/Rel in induction of nitric oxide synthase. J Biol Chem. 1994 Feb 18;269(7):4705–4708. [PubMed] [Google Scholar]
  230. Yang X., Cai B., Sciacca R. R., Cannon P. J. Inhibition of inducible nitric oxide synthase in macrophages by oxidized low-density lipoproteins. Circ Res. 1994 Feb;74(2):318–328. doi: 10.1161/01.res.74.2.318. [DOI] [PubMed] [Google Scholar]
  231. Yates M. T., Lambert L. E., Whitten J. P., McDonald I., Mano M., Ku G., Mao S. J. A protective role for nitric oxide in the oxidative modification of low density lipoproteins by mouse macrophages. FEBS Lett. 1992 Sep 7;309(2):135–138. doi: 10.1016/0014-5793(92)81081-v. [DOI] [PubMed] [Google Scholar]
  232. Yui Y., Hattori R., Kosuga K., Eizawa H., Hiki K., Kawai C. Purification of nitric oxide synthase from rat macrophages. J Biol Chem. 1991 Jul 5;266(19):12544–12547. [PubMed] [Google Scholar]
  233. Zembala M., Siedlar M., Marcinkiewicz J., Pryjma J. Human monocytes are stimulated for nitric oxide release in vitro by some tumor cells but not by cytokines and lipopolysaccharide. Eur J Immunol. 1994 Feb;24(2):435–439. doi: 10.1002/eji.1830240225. [DOI] [PubMed] [Google Scholar]
  234. Zembowicz A., Vane J. R. Induction of nitric oxide synthase activity by toxic shock syndrome toxin 1 in a macrophage-monocyte cell line. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2051–2055. doi: 10.1073/pnas.89.6.2051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  235. Zhang X., Morrison D. C. Lipopolysaccharide-induced selective priming effects on tumor necrosis factor alpha and nitric oxide production in mouse peritoneal macrophages. J Exp Med. 1993 Feb 1;177(2):511–516. doi: 10.1084/jem.177.2.511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  236. Zhang X., Morrison D. C. Pertussis toxin-sensitive factor differentially regulates lipopolysaccharide-induced tumor necrosis factor-alpha and nitric oxide production in mouse peritoneal macrophages. J Immunol. 1993 Feb 1;150(3):1011–1018. [PubMed] [Google Scholar]
  237. Zingarelli B., Carnuccio R., Di Rosa M. Cloricromene inhibits the induction of nitric oxide synthase. Eur J Pharmacol. 1993 Oct 19;243(2):107–111. doi: 10.1016/0014-2999(93)90368-r. [DOI] [PubMed] [Google Scholar]
  238. al-Ramadi B. K., Meissler J. J., Jr, Huang D., Eisenstein T. K. Immunosuppression induced by nitric oxide and its inhibition by interleukin-4. Eur J Immunol. 1992 Sep;22(9):2249–2254. doi: 10.1002/eji.1830220911. [DOI] [PubMed] [Google Scholar]

Articles from Mediators of Inflammation are provided here courtesy of Wiley

RESOURCES