Skip to main content
Mediators of Inflammation logoLink to Mediators of Inflammation
. 1995 Jul;4(4):282–288. doi: 10.1155/S0962935195000457

Myeloperoxidase and eosinophil cationic protein in serum and sputum during antibiotic treatment in cystic fibrosis patients with Pseudomonas aeruginosa infection

B Niggemann 1,, T Stiller 1, K Magdorf 1, U Wahn 1
PMCID: PMC2365643  PMID: 18475652

Abstract

I order to study the time-course of myeloperoxidase (MPO) and eosinophil cationic protein (ECP) as parameters for monitoring inflammation in cystic fibrosis (CF), we investigated ten patients during both a 14-day intravenous antibiotic treatment and a corresponding self control. Modified Shwachman-Kulczycki score improved significantly (p < 0.008), C-reactive protein (CRP) levels decreased significantly (p < 0.05) during antibiotic treatment, while in the control phase there were no significant differences. Lung function parameters did not change significantly during antibiotic treatment or control phase. Serum MPO concentration (p < 0.006) and peripheral blood neutrophil granulocyte counts (p < 0.04) decreased significantly during antibiotic treatment, but not during the control phase. Sentm ECP concentration showed a tendency to decrease during antibiotic treatment, but this failed to reach significance. In general, sputum concentrations of MPO and ECP Were 500- to 1000-fold higher than in serum. However, neither MPO nor ECP in sputum showed a significan variation over time during antibiotic treatment or control phase. From our data we conclude that: (1) measurements of MPO, neutrophils and CRP in peripheral blood do correlate with clinical parameters such as the modified Shwachman-Kulczycki score; (2) neutrophils and MPO seem to reflect inflammatory changes induced by antibiotic treatment; (3) eosinophils may play a role in CF by an enhanced ‘releasability’ and (4) Sputum measurements of mediators of inflammation cannot be recommended.

Full Text

The Full Text of this article is available as a PDF (615.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Azzawi M., Johnston P. W., Majumdar S., Kay A. B., Jeffery P. K. T lymphocytes and activated eosinophils in airway mucosa in fatal asthma and cystic fibrosis. Am Rev Respir Dis. 1992 Jun;145(6):1477–1482. doi: 10.1164/ajrccm/145.6.1477. [DOI] [PubMed] [Google Scholar]
  2. Bruce M. C., Poncz L., Klinger J. D., Stern R. C., Tomashefski J. F., Jr, Dearborn D. G. Biochemical and pathologic evidence for proteolytic destruction of lung connective tissue in cystic fibrosis. Am Rev Respir Dis. 1985 Sep;132(3):529–535. doi: 10.1164/arrd.1985.132.3.529. [DOI] [PubMed] [Google Scholar]
  3. Cantin A., Woods D. E. Protection by antibiotics against myeloperoxidase-dependent cytotoxicity to lung epithelial cells in vitro. J Clin Invest. 1993 Jan;91(1):38–45. doi: 10.1172/JCI116196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chrispin A. R., Norman A. P. The systematic evaluation of the chest radiograph in cystic fibrosis. Pediatr Radiol. 1974;2(2):101–105. doi: 10.1007/BF01314939. [DOI] [PubMed] [Google Scholar]
  5. Elborn J. S., Cordon S. M., Parker D., Delamere F. M., Shale D. J. The host inflammatory response prior to death in patients with cystic fibrosis and chronic Pseudomonas aeruginosa infection. Respir Med. 1993 Nov;87(8):603–607. doi: 10.1016/s0954-6111(05)80263-x. [DOI] [PubMed] [Google Scholar]
  6. Gundel R. H., Wegner C. D., Letts L. G. The onset and recovery from airway hyperresponsiveness: relationship with inflammatory cell infiltrates and release of cytotoxic granule proteins. Clin Exp Allergy. 1992 Feb;22(2):303–308. doi: 10.1111/j.1365-2222.1992.tb03087.x. [DOI] [PubMed] [Google Scholar]
  7. Hällgren R., Bjermer L., Lundgren R., Venge P. The eosinophil component of the alveolitis in idiopathic pulmonary fibrosis. Signs of eosinophil activation in the lung are related to impaired lung function. Am Rev Respir Dis. 1989 Feb;139(2):373–377. doi: 10.1164/ajrccm/139.2.373. [DOI] [PubMed] [Google Scholar]
  8. Høiby N., Koch C. Cystic fibrosis. 1. Pseudomonas aeruginosa infection in cystic fibrosis and its management. Thorax. 1990 Nov;45(11):881–884. doi: 10.1136/thx.45.11.881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Koller D. Y., Götz M., Eichler I., Urbanek R. Eosinophilic activation in cystic fibrosis. Thorax. 1994 May;49(5):496–499. doi: 10.1136/thx.49.5.496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Meyer K. C., Zimmerman J. Neutrophil mediators, Pseudomonas, and pulmonary dysfunction in cystic fibrosis. J Lab Clin Med. 1993 May;121(5):654–661. [PubMed] [Google Scholar]
  11. Peterson C. G., Enander I., Nystrand J., Anderson A. S., Nilsson L., Venge P. Radioimmunoassay of human eosinophil cationic protein (ECP) by an improved method. Establishment of normal levels in serum and turnover in vivo. Clin Exp Allergy. 1991 Sep;21(5):561–567. doi: 10.1111/j.1365-2222.1991.tb00847.x. [DOI] [PubMed] [Google Scholar]
  12. Rayner R. J., Wiseman M. S., Cordon S. M., Norman D., Hiller E. J., Shale D. J. Inflammatory markers in cystic fibrosis. Respir Med. 1991 Mar;85(2):139–145. doi: 10.1016/s0954-6111(06)80292-1. [DOI] [PubMed] [Google Scholar]
  13. Regelmann W. E., Elliott G. R., Warwick W. J., Clawson C. C. Reduction of sputum Pseudomonas aeruginosa density by antibiotics improves lung function in cystic fibrosis more than do bronchodilators and chest physiotherapy alone. Am Rev Respir Dis. 1990 Apr;141(4 Pt 1):914–921. doi: 10.1164/ajrccm/141.4_Pt_1.914. [DOI] [PubMed] [Google Scholar]
  14. SHWACHMAN H., KULCZYCKI L. L. Long-term study of one hundred five patients with cystic fibrosis; studies made over a five- to fourteen-year period. AMA J Dis Child. 1958 Jul;96(1):6–15. doi: 10.1001/archpedi.1958.02060060008002. [DOI] [PubMed] [Google Scholar]
  15. Stenvang Pedersen S., Pressler T., Pedersen M., Høiby N., Friis-Møller A., Koch C. Immediate and prolonged clinical efficacy of ceftazidime versus ceftazidime plus tobramycin in chronic Pseudomonas aeruginosa infection in cystic fibrosis. Scand J Infect Dis. 1986;18(2):133–137. doi: 10.3109/00365548609032319. [DOI] [PubMed] [Google Scholar]
  16. Suter S., Schaad U. B., Roux L., Nydegger U. E., Waldvogel F. A. Granulocyte neutral proteases and Pseudomonas elastase as possible causes of airway damage in patients with cystic fibrosis. J Infect Dis. 1984 Apr;149(4):523–531. doi: 10.1093/infdis/149.4.523. [DOI] [PubMed] [Google Scholar]
  17. Tetley T. D. New perspectives on basic mechanisms in lung disease. 6. Proteinase imbalance: its role in lung disease. Thorax. 1993 May;48(5):560–565. doi: 10.1136/thx.48.5.560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Venge P., Strömberg A., Braconier J. H., Roxin L. E., Olsson I. Neutrophil and eosinophil granulocytes in bacterial infection: sequential studies of cellular and serum levels of granule proteins. Br J Haematol. 1978 Apr;38(4):475–483. doi: 10.1111/j.1365-2141.1978.tb01072.x. [DOI] [PubMed] [Google Scholar]

Articles from Mediators of Inflammation are provided here courtesy of Wiley

RESOURCES