Skip to main content
Mediators of Inflammation logoLink to Mediators of Inflammation
. 1996 Feb;5(1):32–36. doi: 10.1155/S0962935196000051

Rat intestinal mast cell amines are released during nitric oxide synthase inhibition in vitro

A M Northover 1,, B J Northover 1
PMCID: PMC2365765  PMID: 18475694

Abstract

Inhibition of nitric oxide synthase increases microvascular permeability in rat small intestinal villi. To determine the mechanism(s) whereby this occurs we have perfused the vasculature of rat isolated small intestines with a gelatin-containing physiological salt solution. Inclusion of N-nitro-L-argintne methyl ester (L-NAME, 100 μM) or indomethacin (1 μM) in the perfusate increased leakage of injected colloidal carbon into microvessel walls. Pre-treatment with sodium nitroprusside (10 μM) significantly reduced the effects of both L-NAME and indomethacin, whereas carbacyclin (1 μM) only reduced the effects of indomethacin. PD151242 (1 μM) showed some antagonism towards the effects of L-NAME, but nordihydroguaiaretic acid (3 μM) was inactive. Pre-tment with cyproheptadine (10 μM) reduced the effects of both L-NAME and indomethacin, and also significantly reduced background (control) colloidal carbon leakage. Small intestines from polymixin B-treated rats showed significantly reduced colloidal carbon leakage in response to L-NAME. This suggests that the leakage-enhancing effects of both L-NAME and indomethacin in this preparation may be mediated by mast cell-derived amines.

Full Text

The Full Text of this article is available as a PDF (571.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boros M., Takaichi S., Masuda J., Newlands G. F., Hatanaka K. Response of mucosal mast cells to intestinal ischemia-reperfusion injury in the rat. Shock. 1995 Feb;3(2):125–131. [PubMed] [Google Scholar]
  2. Davidge S. T., Baker P. N., Laughlin M. K., Roberts J. M. Nitric oxide produced by endothelial cells increases production of eicosanoids through activation of prostaglandin H synthase. Circ Res. 1995 Aug;77(2):274–283. doi: 10.1161/01.res.77.2.274. [DOI] [PubMed] [Google Scholar]
  3. Furchgott R. F. Role of endothelium in responses of vascular smooth muscle. Circ Res. 1983 Nov;53(5):557–573. doi: 10.1161/01.res.53.5.557. [DOI] [PubMed] [Google Scholar]
  4. Gruetter C. A., Barry B. K., McNamara D. B., Gruetter D. Y., Kadowitz P. J., Ignarro L. Relaxation of bovine coronary artery and activation of coronary arterial guanylate cyclase by nitric oxide, nitroprusside and a carcinogenic nitrosoamine. J Cyclic Nucleotide Res. 1979;5(3):211–224. [PubMed] [Google Scholar]
  5. Kanwar S., Wallace J. L., Befus D., Kubes P. Nitric oxide synthesis inhibition increases epithelial permeability via mast cells. Am J Physiol. 1994 Feb;266(2 Pt 1):G222–G229. doi: 10.1152/ajpgi.1994.266.2.G222. [DOI] [PubMed] [Google Scholar]
  6. Kurose I., Wolf R., Grisham M. B., Granger D. N. Modulation of ischemia/reperfusion-induced microvascular dysfunction by nitric oxide. Circ Res. 1994 Mar;74(3):376–382. doi: 10.1161/01.res.74.3.376. [DOI] [PubMed] [Google Scholar]
  7. Levy L. Effects of different classes of drugs on the passive cutaneous anaphylaxis. Arch Int Pharmacodyn Ther. 1967 Jan;165(1):92–102. [PubMed] [Google Scholar]
  8. Liao L., Granger D. N. Modulation of oxidized low-density lipoprotein-induced microvascular dysfunction by nitric oxide. Am J Physiol. 1995 Apr;268(4 Pt 2):H1643–H1650. doi: 10.1152/ajpheart.1995.268.4.H1643. [DOI] [PubMed] [Google Scholar]
  9. Majno G., Shea S. M., Leventhal M. Endothelial contraction induced by histamine-type mediators: an electron microscopic study. J Cell Biol. 1969 Sep;42(3):647–672. doi: 10.1083/jcb.42.3.647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Moncada S., Palmer R. M., Higgs E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991 Jun;43(2):109–142. [PubMed] [Google Scholar]
  11. Northover A. M. An in vitro method for assessing the effects of pro-inflammatory and anti-inflammatory compounds on microvascular permeability in the rat small intestine. J Pharmacol Toxicol Methods. 1993 Aug;29(4):227–232. doi: 10.1016/1056-8719(93)90030-i. [DOI] [PubMed] [Google Scholar]
  12. Northover A. M., Northover B. J. Possible bi-directional link between ET(A) receptors and protein kinase C in rat blood vessels. Mediators Inflamm. 1995;4(1):55–59. doi: 10.1155/S096293519500010X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Northover A. M., Northover B. J. Rate of perfusion modulates colloidal carbon leakage from rat intestinal microvessels in vitro. Mediators Inflamm. 1995;4(5):344–349. doi: 10.1155/S096293519500055X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rees D. D., Palmer R. M., Schulz R., Hodson H. F., Moncada S. Characterization of three inhibitors of endothelial nitric oxide synthase in vitro and in vivo. Br J Pharmacol. 1990 Nov;101(3):746–752. doi: 10.1111/j.1476-5381.1990.tb14151.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Richard V., Hogie M., Clozel M., Löffler B. M., Thuillez C. In vivo evidence of an endothelin-induced vasopressor tone after inhibition of nitric oxide synthesis in rats. Circulation. 1995 Feb 1;91(3):771–775. doi: 10.1161/01.cir.91.3.771. [DOI] [PubMed] [Google Scholar]
  16. Salvemini D., Misko T. P., Masferrer J. L., Seibert K., Currie M. G., Needleman P. Nitric oxide activates cyclooxygenase enzymes. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7240–7244. doi: 10.1073/pnas.90.15.7240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sautebin L., Ialenti A., Ianaro A., Di Rosa M. Modulation by nitric oxide of prostaglandin biosynthesis in the rat. Br J Pharmacol. 1995 Jan;114(2):323–328. doi: 10.1111/j.1476-5381.1995.tb13230.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Schirgi-Degen A., Beubler E. Significance of nitric oxide in the stimulation of intestinal fluid absorption in the rat jejunum in vivo. Br J Pharmacol. 1995 Jan;114(1):13–18. doi: 10.1111/j.1476-5381.1995.tb14899.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Vane J. R. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat New Biol. 1971 Jun 23;231(25):232–235. doi: 10.1038/newbio231232a0. [DOI] [PubMed] [Google Scholar]
  20. Whittle B. J., Steel G., Boughton-Smith N. K. Gastrointestinal actions of carbacyclin, a stable mimic of prostacyclin. J Pharm Pharmacol. 1980 Aug;32(8):603–604. doi: 10.1111/j.2042-7158.1980.tb13013.x. [DOI] [PubMed] [Google Scholar]
  21. de Nucci G., Thomas R., D'Orleans-Juste P., Antunes E., Walder C., Warner T. D., Vane J. R. Pressor effects of circulating endothelin are limited by its removal in the pulmonary circulation and by the release of prostacyclin and endothelium-derived relaxing factor. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9797–9800. doi: 10.1073/pnas.85.24.9797. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Mediators of Inflammation are provided here courtesy of Wiley

RESOURCES