Skip to main content
Mediators of Inflammation logoLink to Mediators of Inflammation
. 1996 Oct;5(5):370–378. doi: 10.1155/S0962935196000531

Induction of annexin-1 at transcriptional and post-transcriptional level in rat brain by methylprednisolone and the 21-aminosteroid U74389F

P H Voermans 1, K G Go 1,, G J Ter Horst 2, M H J Ruiters 3, E Solito 4, L Parente 5
PMCID: PMC2365797  PMID: 18475732

Abstract

Brain tissue of rats pretreated with methylprednisolone or with the 21-aminosteroid U74389F, and that of untreated control rats, was assessed for the expression of annexin-1 (Anx-1) and the transcription of its mRNA. For this purpose Anx-1 cDNA was amplified and simultaneously a T7-RNA-polymerase promoter was incorporated into the cDNA using a polymerase chain reaction (PCR). Then digoxigenin-11-UTP was incorporated into the transcribed cRNA with T7-RNA-polymerase. With this probe in situ hybridization was carried out on sections of the brain. The probe was visualized by an immunoassay using an antidigoxigenin antibody conjugate. Anx-1 protein was assessed by means of immunohistochemistry using a polyclonal antibody. The various brain areas of the control animals showed an appreciable amount of Anx-1 at mRNA or protein level; on the other hand, the animals which had been pretreated with either steroid, showed a more intense Anx-1 mRNA signal than the controls in many areas. In the pretreated animals Anx-1 immunostaining was unchanged in cortex, basal ganglia, amygdala and septum, but more intense in hippocampus, hypothalamus and thalamus. In ependyma, choroid plexus, meninges, and vascular walls there was no Anx-1 mRNA transcription detectable. An opposite profile was shown by the Anx-1 immunoreactivity, the protein was present in control animals as well as the steroid-pretreated animals, suggesting that here the protein was either from systemic origin, or has diffused from adjacent structures. The results indicated that Anx-1 mRNA transcription is upregulated by either steroid, and that in the untreated animals there is a resting level of Anx-1 mRNA transcription, presumably reflecting physiological influences on Anx-1 expression.

Full Text

The Full Text of this article is available as a PDF (2.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Breitschopf H., Suchanek G., Gould R. M., Colman D. R., Lassmann H. In situ hybridization with digoxigenin-labeled probes: sensitive and reliable detection method applied to myelinating rat brain. Acta Neuropathol. 1992;84(6):581–587. doi: 10.1007/BF00227734. [DOI] [PubMed] [Google Scholar]
  2. Brouwer N., Van Dijken H., Ruiters M. H., Van Willigen J. D., Ter Horst G. J. Localization of dopamine D2 receptor mRNA with non-radioactive in situ hybridization histochemistry. Neurosci Lett. 1992 Aug 17;142(2):223–227. doi: 10.1016/0304-3940(92)90378-k. [DOI] [PubMed] [Google Scholar]
  3. Chen C. Y., Xu N., Shyu A. B. mRNA decay mediated by two distinct AU-rich elements from c-fos and granulocyte-macrophage colony-stimulating factor transcripts: different deadenylation kinetics and uncoupling from translation. Mol Cell Biol. 1995 Oct;15(10):5777–5788. doi: 10.1128/mcb.15.10.5777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cintra A., Zoli M., Rosén L., Agnati L. F., Okret S., Wikström A. C., Gustaffsson J. A., Fuxe K. Mapping and computer assisted morphometry and microdensitometry of glucocorticoid receptor immunoreactive neurons and glial cells in the rat central nervous system. Neuroscience. 1994 Oct;62(3):843–897. doi: 10.1016/0306-4522(94)90481-2. [DOI] [PubMed] [Google Scholar]
  5. Flower R. J. Eleventh Gaddum memorial lecture. Lipocortin and the mechanism of action of the glucocorticoids. Br J Pharmacol. 1988 Aug;94(4):987–1015. doi: 10.1111/j.1476-5381.1988.tb11614.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Flower R. J., Rothwell N. J. Lipocortin-1: cellular mechanisms and clinical relevance. Trends Pharmacol Sci. 1994 Mar;15(3):71–76. doi: 10.1016/0165-6147(94)90281-x. [DOI] [PubMed] [Google Scholar]
  7. Go K. G., Ter Haar J. G., de Ley L., Zuiderveen F., Parente L., Solito E., Molenaar W. M. The effect of steroid treatment on lipocortin immunoreactivity of rat brain. Mediators Inflamm. 1994;3(3):177–180. doi: 10.1155/S0962935194000232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hall E. D., McCall J. M., Chase R. L., Yonkers P. A., Braughler J. M. A nonglucocorticoid steroid analog of methylprednisolone duplicates its high-dose pharmacology in models of central nervous system trauma and neuronal membrane damage. J Pharmacol Exp Ther. 1987 Jul;242(1):137–142. [PubMed] [Google Scholar]
  9. Huber R., Berendes R., Burger A., Schneider M., Karshikov A., Luecke H., Römisch J., Paques E. Crystal and molecular structure of human annexin V after refinement. Implications for structure, membrane binding and ion channel formation of the annexin family of proteins. J Mol Biol. 1992 Feb 5;223(3):683–704. doi: 10.1016/0022-2836(92)90984-r. [DOI] [PubMed] [Google Scholar]
  10. Johnson M. D., Kamso-Pratt J. M., Whetsell W. O., Jr, Pepinsky R. B. Lipocortin-1 immunoreactivity in the normal human central nervous system and lesions with astrocytosis. Am J Clin Pathol. 1989 Oct;92(4):424–429. doi: 10.1093/ajcp/92.4.424. [DOI] [PubMed] [Google Scholar]
  11. Kovacic R. T., Tizard R., Cate R. L., Frey A. Z., Wallner B. P. Correlation of gene and protein structure of rat and human lipocortin I. Biochemistry. 1991 Sep 17;30(37):9015–9021. doi: 10.1021/bi00101a015. [DOI] [PubMed] [Google Scholar]
  12. Luecke H., Chang B. T., Mailliard W. S., Schlaepfer D. D., Haigler H. T. Crystal structure of the annexin XII hexamer and implications for bilayer insertion. Nature. 1995 Nov 30;378(6556):512–515. doi: 10.1038/378512a0. [DOI] [PubMed] [Google Scholar]
  13. McLeod J. D., Bolton C. Dexamethasone induces an increase in intracellular and membrane-associated lipocortin-1 (annexin-1) in rat astrocyte primary cultures. Cell Mol Neurobiol. 1995 Apr;15(2):193–205. doi: 10.1007/BF02073328. [DOI] [PubMed] [Google Scholar]
  14. Parente L., Solito E. Association between glucocorticosteroids and lipocortin 1. Trends Pharmacol Sci. 1994 Oct;15(10):362–362. doi: 10.1016/0165-6147(94)90154-6. [DOI] [PubMed] [Google Scholar]
  15. Peers S. H., Smillie F., Elderfield A. J., Flower R. J. Glucocorticoid-and non-glucocorticoid induction of lipocortins (annexins) 1 and 2 in rat peritoneal leucocytes in vivo. Br J Pharmacol. 1993 Jan;108(1):66–72. doi: 10.1111/j.1476-5381.1993.tb13441.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Perretti M. Lipocortin-derived peptides. Biochem Pharmacol. 1994 Mar 15;47(6):931–938. doi: 10.1016/0006-2952(94)90402-2. [DOI] [PubMed] [Google Scholar]
  17. Raynal P., Pollard H. B. Annexins: the problem of assessing the biological role for a gene family of multifunctional calcium- and phospholipid-binding proteins. Biochim Biophys Acta. 1994 Apr 5;1197(1):63–93. doi: 10.1016/0304-4157(94)90019-1. [DOI] [PubMed] [Google Scholar]
  18. Russo-Marie F. Lipocortins: an update. Prostaglandins Leukot Essent Fatty Acids. 1991 Feb;42(2):83–89. doi: 10.1016/0952-3278(91)90072-d. [DOI] [PubMed] [Google Scholar]
  19. Schaeren-Wiemers N., Gerfin-Moser A. A single protocol to detect transcripts of various types and expression levels in neural tissue and cultured cells: in situ hybridization using digoxigenin-labelled cRNA probes. Histochemistry. 1993 Dec;100(6):431–440. doi: 10.1007/BF00267823. [DOI] [PubMed] [Google Scholar]
  20. Solito E., Raugei G., Melli M., Parente L. Dexamethasone induces the expression of the mRNA of lipocortin 1 and 2 and the release of lipocortin 1 and 5 in differentiated, but not undifferentiated U-937 cells. FEBS Lett. 1991 Oct 21;291(2):238–244. doi: 10.1016/0014-5793(91)81293-h. [DOI] [PubMed] [Google Scholar]
  21. Strijbos P. J., Tilders F. J., Carey F., Forder R., Rothwell N. J. Localization of immunoreactive lipocortin-1 in the brain and pituitary gland of the rat. Effects of adrenalectomy, dexamethasone and colchicine treatment. Brain Res. 1991 Jul 12;553(2):249–260. doi: 10.1016/0006-8993(91)90833-h. [DOI] [PubMed] [Google Scholar]
  22. Wallner B. P., Mattaliano R. J., Hession C., Cate R. L., Tizard R., Sinclair L. K., Foeller C., Chow E. P., Browing J. L., Ramachandran K. L. Cloning and expression of human lipocortin, a phospholipase A2 inhibitor with potential anti-inflammatory activity. Nature. 1986 Mar 6;320(6057):77–81. doi: 10.1038/320077a0. [DOI] [PubMed] [Google Scholar]
  23. Wallner B. P., Mattaliano R. J., Hession C., Cate R. L., Tizard R., Sinclair L. K., Foeller C., Chow E. P., Browing J. L., Ramachandran K. L. Cloning and expression of human lipocortin, a phospholipase A2 inhibitor with potential anti-inflammatory activity. Nature. 1986 Mar 6;320(6057):77–81. doi: 10.1038/320077a0. [DOI] [PubMed] [Google Scholar]
  24. Young I. D., Stewart R. J., Ailles L., Mackie A., Gore J. Synthesis of digoxigenin-labeled cRNA probes for nonisotopic in situ hybridization using reverse transcription polymerase chain reaction. Biotech Histochem. 1993 May;68(3):153–158. doi: 10.3109/10520299309104687. [DOI] [PubMed] [Google Scholar]
  25. de Kloet E. R., Oitzl M. S., Joëls M. Functional implications of brain corticosteroid receptor diversity. Cell Mol Neurobiol. 1993 Aug;13(4):433–455. doi: 10.1007/BF00711582. [DOI] [PubMed] [Google Scholar]

Articles from Mediators of Inflammation are provided here courtesy of Wiley

RESOURCES