Skip to main content
Mediators of Inflammation logoLink to Mediators of Inflammation
. 1996 Dec;5(6):393–416. doi: 10.1155/S0962935196000567

Chemokines: structure, receptors and functions. A new target for inflammation and asthma therapy?

F A A van Acker 1,, H-P Voss 1, H Timmerman 1
PMCID: PMC2365823  PMID: 18475745

Abstract

Five to 10% of the human population have a disorder of the respiratory tract called ‘asthma’. It has been known as a potentially dangerous disease for over 2000 years, as it was already described by Hippocrates and recognized as a disease entity by Egyptian and Hebrew physicians. At the beginning of this decade, there has been a fundamental change in asthma management. The emphasis has shifted from symptom relief with bronchodilator therapies (e.g. β2-agonists) to a much earlier introduction of anti-inflammatory treatment (e.g. corticosteroids). Asthma is now recognized to be a chronic inflammatory disease of the airways, involving various inflammatory cells and their mediators. Although asthma has been the subject of many investigations, the exact role of the different inflammatory cells has not been elucidated completely. Many suggestions have been made and several cells have been implicated in the pathogenesis of asthma, such as the eosinophils, the mast cells, the basophils and the lymphocytes. To date, however, the relative importance of these cells is not completely understood. The cell type predominantly found in the asthmatic lung is the eosinophil and the recruitment of these eosinophils can be seen as a characteristic of asthma. In recent years much attention is given to the role of the newly identified chemokines in asthma pathology. Chemokines are structurally and functionally related 8–10 kDa peptides that are the products of distinct genes clustered on human chromosomes 4 and 17 and can be found at sites of inflammation. They form a superfamily of proinflammatory mediators that promote the recruitment of various kinds of leukocytes and lymphocytes. The chemokine superfamily can be divided into three subgroups based on overall sequence homology. Although the chemokines have highly conserved amino acid sequences, each of the chemokines binds to and induces the chemotaxis of particular classes of white blood cells. Certain chemokines stimulate the recruitment of multiple cell types including monocytes, lymphocytes, basophils, and eosinophils, which are important cells in asthma. Intervention in this process, by the development of chemokine antagonists, might be the key to new therapy. In this review we present an overview of recent developments in the field of chemokines and their role in inflammations as reported in literature.

Full Text

The Full Text of this article is available as a PDF (2.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adelroth E., Rosenhall L., Johansson S. A., Linden M., Venge P. Inflammatory cells and eosinophilic activity in asthmatics investigated by bronchoalveolar lavage. The effects of antiasthmatic treatment with budesonide or terbutaline. Am Rev Respir Dis. 1990 Jul;142(1):91–99. doi: 10.1164/ajrccm/142.1.91. [DOI] [PubMed] [Google Scholar]
  2. Ahuja S. K., Murphy P. M. Molecular piracy of mammalian interleukin-8 receptor type B by herpesvirus saimiri. J Biol Chem. 1993 Oct 5;268(28):20691–20694. [PubMed] [Google Scholar]
  3. Azzawi M., Bradley B., Jeffery P. K., Frew A. J., Wardlaw A. J., Knowles G., Assoufi B., Collins J. V., Durham S., Kay A. B. Identification of activated T lymphocytes and eosinophils in bronchial biopsies in stable atopic asthma. Am Rev Respir Dis. 1990 Dec;142(6 Pt 1):1407–1413. doi: 10.1164/ajrccm/142.6_Pt_1.1407. [DOI] [PubMed] [Google Scholar]
  4. BOYDEN S. The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J Exp Med. 1962 Mar 1;115:453–466. doi: 10.1084/jem.115.3.453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Baggiolini M., Dahinden C. A. CC chemokines in allergic inflammation. Immunol Today. 1994 Mar;15(3):127–133. doi: 10.1016/0167-5699(94)90156-2. [DOI] [PubMed] [Google Scholar]
  6. Baggiolini M., Dewald B., Moser B. Interleukin-8 and related chemotactic cytokines--CXC and CC chemokines. Adv Immunol. 1994;55:97–179. [PubMed] [Google Scholar]
  7. Baggiolini M., Loetscher P., Moser B. Interleukin-8 and the chemokine family. Int J Immunopharmacol. 1995 Feb;17(2):103–108. doi: 10.1016/0192-0561(94)00088-6. [DOI] [PubMed] [Google Scholar]
  8. Barnes P. J. Anti-inflammatory therapy for asthma. Annu Rev Med. 1993;44:229–242. doi: 10.1146/annurev.me.44.020193.001305. [DOI] [PubMed] [Google Scholar]
  9. Beall C. J., Mahajan S., Kolattukudy P. E. Conversion of monocyte chemoattractant protein-1 into a neutrophil attractant by substitution of two amino acids. J Biol Chem. 1992 Feb 15;267(5):3455–3459. [PubMed] [Google Scholar]
  10. Beasley R., Roche W. R., Roberts J. A., Holgate S. T. Cellular events in the bronchi in mild asthma and after bronchial provocation. Am Rev Respir Dis. 1989 Mar;139(3):806–817. doi: 10.1164/ajrccm/139.3.806. [DOI] [PubMed] [Google Scholar]
  11. Ben-Baruch A., Xu L., Young P. R., Bengali K., Oppenheim J. J., Wang J. M. Monocyte chemotactic protein-3 (MCP3) interacts with multiple leukocyte receptors. C-C CKR1, a receptor for macrophage inflammatory protein-1 alpha/Rantes, is also a functional receptor for MCP3. J Biol Chem. 1995 Sep 22;270(38):22123–22128. doi: 10.1074/jbc.270.38.22123. [DOI] [PubMed] [Google Scholar]
  12. Besemer J., Hujber A., Kuhn B. Specific binding, internalization, and degradation of human neutrophil activating factor by human polymorphonuclear leukocytes. J Biol Chem. 1989 Oct 15;264(29):17409–17415. [PubMed] [Google Scholar]
  13. Bochner B. S., Undem B. J., Lichtenstein L. M. Immunological aspects of allergic asthma. Annu Rev Immunol. 1994;12:295–335. doi: 10.1146/annurev.iy.12.040194.001455. [DOI] [PubMed] [Google Scholar]
  14. Butcher E. C. Leukocyte-endothelial cell recognition: three (or more) steps to specificity and diversity. Cell. 1991 Dec 20;67(6):1033–1036. doi: 10.1016/0092-8674(91)90279-8. [DOI] [PubMed] [Google Scholar]
  15. Charo I. F., Myers S. J., Herman A., Franci C., Connolly A. J., Coughlin S. R. Molecular cloning and functional expression of two monocyte chemoattractant protein 1 receptors reveals alternative splicing of the carboxyl-terminal tails. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2752–2756. doi: 10.1073/pnas.91.7.2752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Chaudhuri A., Polyakova J., Zbrzezna V., Williams K., Gulati S., Pogo A. O. Cloning of glycoprotein D cDNA, which encodes the major subunit of the Duffy blood group system and the receptor for the Plasmodium vivax malaria parasite. Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10793–10797. doi: 10.1073/pnas.90.22.10793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Chuntharapai A., Kim K. J. Regulation of the expression of IL-8 receptor A/B by IL-8: possible functions of each receptor. J Immunol. 1995 Sep 1;155(5):2587–2594. [PubMed] [Google Scholar]
  18. Chuntharapai A., Lee J., Hébert C. A., Kim K. J. Monoclonal antibodies detect different distribution patterns of IL-8 receptor A and IL-8 receptor B on human peripheral blood leukocytes. J Immunol. 1994 Dec 15;153(12):5682–5688. [PubMed] [Google Scholar]
  19. Clark-Lewis I., Dewald B., Geiser T., Moser B., Baggiolini M. Platelet factor 4 binds to interleukin 8 receptors and activates neutrophils when its N terminus is modified with Glu-Leu-Arg. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3574–3577. doi: 10.1073/pnas.90.8.3574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Clark-Lewis I., Kim K. S., Rajarathnam K., Gong J. H., Dewald B., Moser B., Baggiolini M., Sykes B. D. Structure-activity relationships of chemokines. J Leukoc Biol. 1995 May;57(5):703–711. doi: 10.1002/jlb.57.5.703. [DOI] [PubMed] [Google Scholar]
  21. Clark-Lewis I., Schumacher C., Baggiolini M., Moser B. Structure-activity relationships of interleukin-8 determined using chemically synthesized analogs. Critical role of NH2-terminal residues and evidence for uncoupling of neutrophil chemotaxis, exocytosis, and receptor binding activities. J Biol Chem. 1991 Dec 5;266(34):23128–23134. [PubMed] [Google Scholar]
  22. Combadiere C., Ahuja S. K., Murphy P. M. Cloning and functional expression of a human eosinophil CC chemokine receptor. J Biol Chem. 1995 Jul 14;270(28):16491–16494. doi: 10.1074/jbc.270.28.16491. [DOI] [PubMed] [Google Scholar]
  23. Combadiere C., Ahuja S. K., Murphy P. M. Cloning, chromosomal localization, and RNA expression of a human beta chemokine receptor-like gene. DNA Cell Biol. 1995 Aug;14(8):673–680. doi: 10.1089/dna.1995.14.673. [DOI] [PubMed] [Google Scholar]
  24. Dahinden C. A., Geiser T., Brunner T., von Tscharner V., Caput D., Ferrara P., Minty A., Baggiolini M. Monocyte chemotactic protein 3 is a most effective basophil- and eosinophil-activating chemokine. J Exp Med. 1994 Feb 1;179(2):751–756. doi: 10.1084/jem.179.2.751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Dale H. H., Laidlaw P. P. The physiological action of beta-iminazolylethylamine. J Physiol. 1910 Dec 31;41(5):318–344. doi: 10.1113/jphysiol.1910.sp001406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Darbonne W. C., Rice G. C., Mohler M. A., Apple T., Hébert C. A., Valente A. J., Baker J. B. Red blood cells are a sink for interleukin 8, a leukocyte chemotaxin. J Clin Invest. 1991 Oct;88(4):1362–1369. doi: 10.1172/JCI115442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Devreotes P. N., Zigmond S. H. Chemotaxis in eukaryotic cells: a focus on leukocytes and Dictyostelium. Annu Rev Cell Biol. 1988;4:649–686. doi: 10.1146/annurev.cb.04.110188.003245. [DOI] [PubMed] [Google Scholar]
  28. Farber J. M. HuMig: a new human member of the chemokine family of cytokines. Biochem Biophys Res Commun. 1993 Apr 15;192(1):223–230. doi: 10.1006/bbrc.1993.1403. [DOI] [PubMed] [Google Scholar]
  29. Gao J. L., Kuhns D. B., Tiffany H. L., McDermott D., Li X., Francke U., Murphy P. M. Structure and functional expression of the human macrophage inflammatory protein 1 alpha/RANTES receptor. J Exp Med. 1993 May 1;177(5):1421–1427. doi: 10.1084/jem.177.5.1421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Gong J. H., Clark-Lewis I. Antagonists of monocyte chemoattractant protein 1 identified by modification of functionally critical NH2-terminal residues. J Exp Med. 1995 Feb 1;181(2):631–640. doi: 10.1084/jem.181.2.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Griffiths-Johnson D. A., Collins P. D., Rossi A. G., Jose P. J., Williams T. J. The chemokine, eotaxin, activates guinea-pig eosinophils in vitro and causes their accumulation into the lung in vivo. Biochem Biophys Res Commun. 1993 Dec 30;197(3):1167–1172. doi: 10.1006/bbrc.1993.2599. [DOI] [PubMed] [Google Scholar]
  32. Grob P. M., David E., Warren T. C., DeLeon R. P., Farina P. R., Homon C. A. Characterization of a receptor for human monocyte-derived neutrophil chemotactic factor/interleukin-8. J Biol Chem. 1990 May 15;265(14):8311–8316. [PubMed] [Google Scholar]
  33. Gundel R. H., Letts L. G., Gleich G. J. Human eosinophil major basic protein induces airway constriction and airway hyperresponsiveness in primates. J Clin Invest. 1991 Apr;87(4):1470–1473. doi: 10.1172/JCI115155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Henocq E., Vargaftig B. B. Accumulation of eosinophils in response to intracutaneous PAF-acether and allergens in man. Lancet. 1986 Jun 14;1(8494):1378–1379. doi: 10.1016/s0140-6736(86)91683-1. [DOI] [PubMed] [Google Scholar]
  35. Holmes W. E., Lee J., Kuang W. J., Rice G. C., Wood W. I. Structure and functional expression of a human interleukin-8 receptor. Science. 1991 Sep 13;253(5025):1278–1280. doi: 10.1126/science.1840701. [DOI] [PubMed] [Google Scholar]
  36. Horuk R., Colby T. J., Darbonne W. C., Schall T. J., Neote K. The human erythrocyte inflammatory peptide (chemokine) receptor. Biochemical characterization, solubilization, and development of a binding assay for the soluble receptor. Biochemistry. 1993 Jun 8;32(22):5733–5738. doi: 10.1021/bi00073a002. [DOI] [PubMed] [Google Scholar]
  37. Horuk R. Molecular properties of the chemokine receptor family. Trends Pharmacol Sci. 1994 May;15(5):159–165. doi: 10.1016/0165-6147(94)90077-9. [DOI] [PubMed] [Google Scholar]
  38. Hébert C. A., Chuntharapai A., Smith M., Colby T., Kim J., Horuk R. Partial functional mapping of the human interleukin-8 type A receptor. Identification of a major ligand binding domain. J Biol Chem. 1993 Sep 5;268(25):18549–18553. [PubMed] [Google Scholar]
  39. Hébert C. A., Vitangcol R. V., Baker J. B. Scanning mutagenesis of interleukin-8 identifies a cluster of residues required for receptor binding. J Biol Chem. 1991 Oct 5;266(28):18989–18994. [PubMed] [Google Scholar]
  40. Jeffery P. K., Wardlaw A. J., Nelson F. C., Collins J. V., Kay A. B. Bronchial biopsies in asthma. An ultrastructural, quantitative study and correlation with hyperreactivity. Am Rev Respir Dis. 1989 Dec;140(6):1745–1753. doi: 10.1164/ajrccm/140.6.1745. [DOI] [PubMed] [Google Scholar]
  41. Jose P. J., Griffiths-Johnson D. A., Collins P. D., Walsh D. T., Moqbel R., Totty N. F., Truong O., Hsuan J. J., Williams T. J. Eotaxin: a potent eosinophil chemoattractant cytokine detected in a guinea pig model of allergic airways inflammation. J Exp Med. 1994 Mar 1;179(3):881–887. doi: 10.1084/jem.179.3.881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Kay A. B., Corrigan C. J. Asthma. Eosinophils and neutrophils. Br Med Bull. 1992 Jan;48(1):51–64. doi: 10.1093/oxfordjournals.bmb.a072541. [DOI] [PubMed] [Google Scholar]
  43. Kelner G. S., Kennedy J., Bacon K. B., Kleyensteuber S., Largaespada D. A., Jenkins N. A., Copeland N. G., Bazan J. F., Moore K. W., Schall T. J. Lymphotactin: a cytokine that represents a new class of chemokine. Science. 1994 Nov 25;266(5189):1395–1399. doi: 10.1126/science.7973732. [DOI] [PubMed] [Google Scholar]
  44. Kelner G. S., Zlotnik A. Cytokine production profile of early thymocytes and the characterization of a new class of chemokine. J Leukoc Biol. 1995 May;57(5):778–781. doi: 10.1002/jlb.57.5.778. [DOI] [PubMed] [Google Scholar]
  45. Kelvin D. J., Michiel D. F., Johnston J. A., Lloyd A. R., Sprenger H., Oppenheim J. J., Wang J. M. Chemokines and serpentines: the molecular biology of chemokine receptors. J Leukoc Biol. 1993 Dec;54(6):604–612. doi: 10.1002/jlb.54.6.604. [DOI] [PubMed] [Google Scholar]
  46. Kennedy J., Kelner G. S., Kleyensteuber S., Schall T. J., Weiss M. C., Yssel H., Schneider P. V., Cocks B. G., Bacon K. B., Zlotnik A. Molecular cloning and functional characterization of human lymphotactin. J Immunol. 1995 Jul 1;155(1):203–209. [PubMed] [Google Scholar]
  47. Kirby J. G., Hargreave F. E., Gleich G. J., O'Byrne P. M. Bronchoalveolar cell profiles of asthmatic and nonasthmatic subjects. Am Rev Respir Dis. 1987 Aug;136(2):379–383. doi: 10.1164/ajrccm/136.2.379. [DOI] [PubMed] [Google Scholar]
  48. Lasky L. A. Chemokines: combinatorial mediators of inflammation? Curr Biol. 1993 Jun 1;3(6):366–368. doi: 10.1016/0960-9822(93)90203-z. [DOI] [PubMed] [Google Scholar]
  49. Lasky L. A. Selectins: interpreters of cell-specific carbohydrate information during inflammation. Science. 1992 Nov 6;258(5084):964–969. doi: 10.1126/science.1439808. [DOI] [PubMed] [Google Scholar]
  50. Lee J., Horuk R., Rice G. C., Bennett G. L., Camerato T., Wood W. I. Characterization of two high affinity human interleukin-8 receptors. J Biol Chem. 1992 Aug 15;267(23):16283–16287. [PubMed] [Google Scholar]
  51. Loetscher P., Seitz M., Clark-Lewis I., Baggiolini M., Moser B. Both interleukin-8 receptors independently mediate chemotaxis. Jurkat cells transfected with IL-8R1 or IL-8R2 migrate in response to IL-8, GRO alpha and NAP-2. FEBS Lett. 1994 Mar 21;341(2-3):187–192. doi: 10.1016/0014-5793(94)80454-0. [DOI] [PubMed] [Google Scholar]
  52. Luster A. D., Unkeless J. C., Ravetch J. V. Gamma-interferon transcriptionally regulates an early-response gene containing homology to platelet proteins. Nature. 1985 Jun 20;315(6021):672–676. doi: 10.1038/315672a0. [DOI] [PubMed] [Google Scholar]
  53. Lusti-Narasimhan M., Power C. A., Allet B., Alouani S., Bacon K. B., Mermod J. J., Proudfoot A. E., Wells T. N. Mutation of Leu25 and Val27 introduces CC chemokine activity into interleukin-8. J Biol Chem. 1995 Feb 10;270(6):2716–2721. doi: 10.1074/jbc.270.6.2716. [DOI] [PubMed] [Google Scholar]
  54. Meurer R., Van Riper G., Feeney W., Cunningham P., Hora D., Jr, Springer M. S., MacIntyre D. E., Rosen H. Formation of eosinophilic and monocytic intradermal inflammatory sites in the dog by injection of human RANTES but not human monocyte chemoattractant protein 1, human macrophage inflammatory protein 1 alpha, or human interleukin 8. J Exp Med. 1993 Dec 1;178(6):1913–1921. doi: 10.1084/jem.178.6.1913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Moser B., Dewald B., Barella L., Schumacher C., Baggiolini M., Clark-Lewis I. Interleukin-8 antagonists generated by N-terminal modification. J Biol Chem. 1993 Apr 5;268(10):7125–7128. [PubMed] [Google Scholar]
  56. Moser B., Schumacher C., von Tscharner V., Clark-Lewis I., Baggiolini M. Neutrophil-activating peptide 2 and gro/melanoma growth-stimulatory activity interact with neutrophil-activating peptide 1/interleukin 8 receptors on human neutrophils. J Biol Chem. 1991 Jun 5;266(16):10666–10671. [PubMed] [Google Scholar]
  57. Murphy P. M. The molecular biology of leukocyte chemoattractant receptors. Annu Rev Immunol. 1994;12:593–633. doi: 10.1146/annurev.iy.12.040194.003113. [DOI] [PubMed] [Google Scholar]
  58. Neote K., Darbonne W., Ogez J., Horuk R., Schall T. J. Identification of a promiscuous inflammatory peptide receptor on the surface of red blood cells. J Biol Chem. 1993 Jun 15;268(17):12247–12249. [PubMed] [Google Scholar]
  59. Neote K., DiGregorio D., Mak J. Y., Horuk R., Schall T. J. Molecular cloning, functional expression, and signaling characteristics of a C-C chemokine receptor. Cell. 1993 Feb 12;72(3):415–425. doi: 10.1016/0092-8674(93)90118-a. [DOI] [PubMed] [Google Scholar]
  60. O'Byrne P. M. What is asthma? An update on the mechanisms. J Investig Allergol Clin Immunol. 1995 Jan-Feb;5(1):6–11. [PubMed] [Google Scholar]
  61. Oppenheim J. J., Zachariae C. O., Mukaida N., Matsushima K. Properties of the novel proinflammatory supergene "intercrine" cytokine family. Annu Rev Immunol. 1991;9:617–648. doi: 10.1146/annurev.iy.09.040191.003153. [DOI] [PubMed] [Google Scholar]
  62. Ponath P. D., Qin S., Ringler D. J., Clark-Lewis I., Wang J., Kassam N., Smith H., Shi X., Gonzalo J. A., Newman W. Cloning of the human eosinophil chemoattractant, eotaxin. Expression, receptor binding, and functional properties suggest a mechanism for the selective recruitment of eosinophils. J Clin Invest. 1996 Feb 1;97(3):604–612. doi: 10.1172/JCI118456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Probst W. C., Snyder L. A., Schuster D. I., Brosius J., Sealfon S. C. Sequence alignment of the G-protein coupled receptor superfamily. DNA Cell Biol. 1992 Jan-Feb;11(1):1–20. doi: 10.1089/dna.1992.11.1. [DOI] [PubMed] [Google Scholar]
  64. Proost P., De Wolf-Peeters C., Conings R., Opdenakker G., Billiau A., Van Damme J. Identification of a novel granulocyte chemotactic protein (GCP-2) from human tumor cells. In vitro and in vivo comparison with natural forms of GRO, IP-10, and IL-8. J Immunol. 1993 Feb 1;150(3):1000–1010. [PubMed] [Google Scholar]
  65. Proost P., Wuyts A., Van Damme J. Human monocyte chemotactic proteins-2 and -3: structural and functional comparison with MCP-1. J Leukoc Biol. 1996 Jan;59(1):67–74. doi: 10.1002/jlb.59.1.67. [DOI] [PubMed] [Google Scholar]
  66. Raport C. J., Schweickart V. L., Chantry D., Eddy R. L., Jr, Shows T. B., Godiska R., Gray P. W. New members of the chemokine receptor gene family. J Leukoc Biol. 1996 Jan;59(1):18–23. doi: 10.1002/jlb.59.1.18. [DOI] [PubMed] [Google Scholar]
  67. Rothenberg M. E., Luster A. D., Leder P. Murine eotaxin: an eosinophil chemoattractant inducible in endothelial cells and in interleukin 4-induced tumor suppression. Proc Natl Acad Sci U S A. 1995 Sep 12;92(19):8960–8964. doi: 10.1073/pnas.92.19.8960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Rothenberg M. E., Luster A. D., Lilly C. M., Drazen J. M., Leder P. Constitutive and allergen-induced expression of eotaxin mRNA in the guinea pig lung. J Exp Med. 1995 Mar 1;181(3):1211–1216. doi: 10.1084/jem.181.3.1211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Samanta A. K., Oppenheim J. J., Matsushima K. Interleukin 8 (monocyte-derived neutrophil chemotactic factor) dynamically regulates its own receptor expression on human neutrophils. J Biol Chem. 1990 Jan 5;265(1):183–189. [PubMed] [Google Scholar]
  70. Schall T. J., Bacon K. B. Chemokines, leukocyte trafficking, and inflammation. Curr Opin Immunol. 1994 Dec;6(6):865–873. doi: 10.1016/0952-7915(94)90006-x. [DOI] [PubMed] [Google Scholar]
  71. Schumacher C., Clark-Lewis I., Baggiolini M., Moser B. High- and low-affinity binding of GRO alpha and neutrophil-activating peptide 2 to interleukin 8 receptors on human neutrophils. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10542–10546. doi: 10.1073/pnas.89.21.10542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Shelhamer J. H., Levine S. J., Wu T., Jacoby D. B., Kaliner M. A., Rennard S. I. NIH conference. Airway inflammation. Ann Intern Med. 1995 Aug 15;123(4):288–304. doi: 10.7326/0003-4819-123-4-199508150-00008. [DOI] [PubMed] [Google Scholar]
  73. Shimizu Y., Newman W., Tanaka Y., Shaw S. Lymphocyte interactions with endothelial cells. Immunol Today. 1992 Mar;13(3):106–112. doi: 10.1016/0167-5699(92)90151-V. [DOI] [PubMed] [Google Scholar]
  74. Springer T. A. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell. 1994 Jan 28;76(2):301–314. doi: 10.1016/0092-8674(94)90337-9. [DOI] [PubMed] [Google Scholar]
  75. Stellato C., Beck L. A., Gorgone G. A., Proud D., Schall T. J., Ono S. J., Lichtenstein L. M., Schleimer R. P. Expression of the chemokine RANTES by a human bronchial epithelial cell line. Modulation by cytokines and glucocorticoids. J Immunol. 1995 Jul 1;155(1):410–418. [PubMed] [Google Scholar]
  76. Strieter R. M., Koch A. E., Antony V. B., Fick R. B., Jr, Standiford T. J., Kunkel S. L. The immunopathology of chemotactic cytokines: the role of interleukin-8 and monocyte chemoattractant protein-1. J Lab Clin Med. 1994 Feb;123(2):183–197. [PubMed] [Google Scholar]
  77. Tanaka Y., Adams D. H., Hubscher S., Hirano H., Siebenlist U., Shaw S. T-cell adhesion induced by proteoglycan-immobilized cytokine MIP-1 beta. Nature. 1993 Jan 7;361(6407):79–82. doi: 10.1038/361079a0. [DOI] [PubMed] [Google Scholar]
  78. Virchow J. C., Jr, Kroegel C., Walker C., Matthys H. Cellular and immunological markers of allergic and intrinsic bronchial asthma. Lung. 1994;172(6):313–334. doi: 10.1007/BF00172846. [DOI] [PubMed] [Google Scholar]
  79. Wang J. M., McVicar D. W., Oppenheim J. J., Kelvin D. J. Identification of RANTES receptors on human monocytic cells: competition for binding and desensitization by homologous chemotactic cytokines. J Exp Med. 1993 Mar 1;177(3):699–705. doi: 10.1084/jem.177.3.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Wardlaw A. J., Dunnette S., Gleich G. J., Collins J. V., Kay A. B. Eosinophils and mast cells in bronchoalveolar lavage in subjects with mild asthma. Relationship to bronchial hyperreactivity. Am Rev Respir Dis. 1988 Jan;137(1):62–69. doi: 10.1164/ajrccm/137.1.62. [DOI] [PubMed] [Google Scholar]
  81. Wells T. N., Power C. A., Lusti-Narasimhan M., Hoogewerf A. J., Cooke R. M., Chung C. W., Peitsch M. C., Proudfoot A. E. Selectivity and antagonism of chemokine receptors. J Leukoc Biol. 1996 Jan;59(1):53–60. doi: 10.1002/jlb.59.1.53. [DOI] [PubMed] [Google Scholar]
  82. Yoshimura T., Matsushima K., Oppenheim J. J., Leonard E. J. Neutrophil chemotactic factor produced by lipopolysaccharide (LPS)-stimulated human blood mononuclear leukocytes: partial characterization and separation from interleukin 1 (IL 1). J Immunol. 1987 Aug 1;139(3):788–793. [PubMed] [Google Scholar]
  83. Yoshimura T., Matsushima K., Tanaka S., Robinson E. A., Appella E., Oppenheim J. J., Leonard E. J. Purification of a human monocyte-derived neutrophil chemotactic factor that has peptide sequence similarity to other host defense cytokines. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9233–9237. doi: 10.1073/pnas.84.24.9233. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Mediators of Inflammation are provided here courtesy of Wiley

RESOURCES