Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1994 Mar;68(3):1660–1666. doi: 10.1128/jvi.68.3.1660-1666.1994

Nevirapine resistance mutations of human immunodeficiency virus type 1 selected during therapy.

D D Richman 1, D Havlir 1, J Corbeil 1, D Looney 1, C Ignacio 1, S A Spector 1, J Sullivan 1, S Cheeseman 1, K Barringer 1, D Pauletti 1, et al.
PMCID: PMC236624  PMID: 7509000

Abstract

Drug susceptibility and mutations in the reverse transcriptase (RT) gene were analyzed with 167 virus isolates from 38 patients treated with nevirapine, a potent nonnucleoside inhibitor of human immunodeficiency virus type 1 (HIV-1) RT. Resistant isolates emerged quickly and uniformly in all patients administered nevirapine either as monotherapy or in combination with zidovudine (AZT). Resistance developed as early as 1 week, indicating rapid turnover of the virus population. The development of resistance was associated with the loss of antiviral drug activity as measured by CD4 lymphocyte counts and levels of HIV p24 antigen and RNA in serum. In addition to mutations at amino acid residues 103, 106, and 181 that had been identified by selection in cell culture, mutations at residues 108, 188, and 190 were also found in the patient isolates. Sequences from patient clones documented cocirculating mixtures of populations of different mutants. The most common mutation with monotherapy, tyrosine to cysteine at residue 181, was prevented from emerging by coadministration of AZT, which resulted in the selection of alternative mutations. The observations documented that, under selective drug pressure, the circulating virus population can change rapidly, and many alternative mutants can emerge, often in complex mixtures. The addition of a second RT inhibitor, AZT, significantly altered the pattern of mutations in the circulating population of HIV.

Full text

PDF
1660

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bacolla A., Shih C. K., Rose J. M., Piras G., Warren T. C., Grygon C. A., Ingraham R. H., Cousins R. C., Greenwood D. J., Richman D. Amino acid substitutions in HIV-1 reverse transcriptase with corresponding residues from HIV-2. Effect on kinetic constants and inhibition by non-nucleoside analogs. J Biol Chem. 1993 Aug 5;268(22):16571–16577. [PubMed] [Google Scholar]
  2. Balzarini J., Karlsson A., Pérez-Pérez M. J., Camarasa M. J., Tarpley W. G., De Clercq E. Treatment of human immunodeficiency virus type 1 (HIV-1)-infected cells with combinations of HIV-1-specific inhibitors results in a different resistance pattern than does treatment with single-drug therapy. J Virol. 1993 Sep;67(9):5353–5359. doi: 10.1128/jvi.67.9.5353-5359.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Byrnes V. W., Sardana V. V., Schleif W. A., Condra J. H., Waterbury J. A., Wolfgang J. A., Long W. J., Schneider C. L., Schlabach A. J., Wolanski B. S. Comprehensive mutant enzyme and viral variant assessment of human immunodeficiency virus type 1 reverse transcriptase resistance to nonnucleoside inhibitors. Antimicrob Agents Chemother. 1993 Aug;37(8):1576–1579. doi: 10.1128/aac.37.8.1576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cheeseman S. H., Hattox S. E., McLaughlin M. M., Koup R. A., Andrews C., Bova C. A., Pav J. W., Roy T., Sullivan J. L., Keirns J. J. Pharmacokinetics of nevirapine: initial single-rising-dose study in humans. Antimicrob Agents Chemother. 1993 Feb;37(2):178–182. doi: 10.1128/aac.37.2.178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Coffin J. M. Genetic diversity and evolution of retroviruses. Curr Top Microbiol Immunol. 1992;176:143–164. doi: 10.1007/978-3-642-77011-1_10. [DOI] [PubMed] [Google Scholar]
  6. Corpet F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 1988 Nov 25;16(22):10881–10890. doi: 10.1093/nar/16.22.10881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Daar E. S., Moudgil T., Meyer R. D., Ho D. D. Transient high levels of viremia in patients with primary human immunodeficiency virus type 1 infection. N Engl J Med. 1991 Apr 4;324(14):961–964. doi: 10.1056/NEJM199104043241405. [DOI] [PubMed] [Google Scholar]
  8. Dueweke T. J., Pushkarskaya T., Poppe S. M., Swaney S. M., Zhao J. Q., Chen I. S., Stevenson M., Tarpley W. G. A mutation in reverse transcriptase of bis(heteroaryl)piperazine-resistant human immunodeficiency virus type 1 that confers increased sensitivity to other nonnucleoside inhibitors. Proc Natl Acad Sci U S A. 1993 May 15;90(10):4713–4717. doi: 10.1073/pnas.90.10.4713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Embretson J., Zupancic M., Ribas J. L., Burke A., Racz P., Tenner-Racz K., Haase A. T. Massive covert infection of helper T lymphocytes and macrophages by HIV during the incubation period of AIDS. Nature. 1993 Mar 25;362(6418):359–362. doi: 10.1038/362359a0. [DOI] [PubMed] [Google Scholar]
  10. Emini E. A., Graham D. J., Gotlib L., Condra J. H., Byrnes V. W., Schleif W. A. HIV and multidrug resistance. Nature. 1993 Aug 19;364(6439):679–679. doi: 10.1038/364679b0. [DOI] [PubMed] [Google Scholar]
  11. Eron J. J., Jr, Johnson V. A., Merrill D. P., Chou T. C., Hirsch M. S. Synergistic inhibition of replication of human immunodeficiency virus type 1, including that of a zidovudine-resistant isolate, by zidovudine and 2',3'-dideoxycytidine in vitro. Antimicrob Agents Chemother. 1992 Jul;36(7):1559–1562. doi: 10.1128/aac.36.7.1559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gao W. Y., Shirasaka T., Johns D. G., Broder S., Mitsuya H. Differential phosphorylation of azidothymidine, dideoxycytidine, and dideoxyinosine in resting and activated peripheral blood mononuclear cells. J Clin Invest. 1993 May;91(5):2326–2333. doi: 10.1172/JCI116463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Holland J. J., De La Torre J. C., Steinhauer D. A. RNA virus populations as quasispecies. Curr Top Microbiol Immunol. 1992;176:1–20. doi: 10.1007/978-3-642-77011-1_1. [DOI] [PubMed] [Google Scholar]
  14. Johnson V. A., Merrill D. P., Videler J. A., Chou T. C., Byington R. E., Eron J. J., D'Aquila R. T., Hirsch M. S. Two-drug combinations of zidovudine, didanosine, and recombinant interferon-alpha A inhibit replication of zidovudine-resistant human immunodeficiency virus type 1 synergistically in vitro. J Infect Dis. 1991 Oct;164(4):646–655. doi: 10.1093/infdis/164.4.646. [DOI] [PubMed] [Google Scholar]
  15. Kellam P., Boucher C. A., Larder B. A. Fifth mutation in human immunodeficiency virus type 1 reverse transcriptase contributes to the development of high-level resistance to zidovudine. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1934–1938. doi: 10.1073/pnas.89.5.1934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kohlstaedt L. A., Wang J., Friedman J. M., Rice P. A., Steitz T. A. Crystal structure at 3.5 A resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science. 1992 Jun 26;256(5065):1783–1790. doi: 10.1126/science.1377403. [DOI] [PubMed] [Google Scholar]
  17. Larder B. A. 3'-Azido-3'-deoxythymidine resistance suppressed by a mutation conferring human immunodeficiency virus type 1 resistance to nonnucleoside reverse transcriptase inhibitors. Antimicrob Agents Chemother. 1992 Dec;36(12):2664–2669. doi: 10.1128/aac.36.12.2664. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Larder B. A., Kellam P., Kemp S. D. Convergent combination therapy can select viable multidrug-resistant HIV-1 in vitro. Nature. 1993 Sep 30;365(6445):451–453. doi: 10.1038/365451a0. [DOI] [PubMed] [Google Scholar]
  19. Larder B. A., Kemp S. D. Multiple mutations in HIV-1 reverse transcriptase confer high-level resistance to zidovudine (AZT). Science. 1989 Dec 1;246(4934):1155–1158. doi: 10.1126/science.2479983. [DOI] [PubMed] [Google Scholar]
  20. Merluzzi V. J., Hargrave K. D., Labadia M., Grozinger K., Skoog M., Wu J. C., Shih C. K., Eckner K., Hattox S., Adams J. Inhibition of HIV-1 replication by a nonnucleoside reverse transcriptase inhibitor. Science. 1990 Dec 7;250(4986):1411–1413. doi: 10.1126/science.1701568. [DOI] [PubMed] [Google Scholar]
  21. Nunberg J. H., Schleif W. A., Boots E. J., O'Brien J. A., Quintero J. C., Hoffman J. M., Emini E. A., Goldman M. E. Viral resistance to human immunodeficiency virus type 1-specific pyridinone reverse transcriptase inhibitors. J Virol. 1991 Sep;65(9):4887–4892. doi: 10.1128/jvi.65.9.4887-4892.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pantaleo G., Graziosi C., Demarest J. F., Butini L., Montroni M., Fox C. H., Orenstein J. M., Kotler D. P., Fauci A. S. HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of disease. Nature. 1993 Mar 25;362(6418):355–358. doi: 10.1038/362355a0. [DOI] [PubMed] [Google Scholar]
  23. Piatak M., Jr, Saag M. S., Yang L. C., Clark S. J., Kappes J. C., Luk K. C., Hahn B. H., Shaw G. M., Lifson J. D. High levels of HIV-1 in plasma during all stages of infection determined by competitive PCR. Science. 1993 Mar 19;259(5102):1749–1754. doi: 10.1126/science.8096089. [DOI] [PubMed] [Google Scholar]
  24. Richman D., Rosenthal A. S., Skoog M., Eckner R. J., Chou T. C., Sabo J. P., Merluzzi V. J. BI-RG-587 is active against zidovudine-resistant human immunodeficiency virus type 1 and synergistic with zidovudine. Antimicrob Agents Chemother. 1991 Feb;35(2):305–308. doi: 10.1128/aac.35.2.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Richman D., Shih C. K., Lowy I., Rose J., Prodanovich P., Goff S., Griffin J. Human immunodeficiency virus type 1 mutants resistant to nonnucleoside inhibitors of reverse transcriptase arise in tissue culture. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11241–11245. doi: 10.1073/pnas.88.24.11241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Saag M. S., Emini E. A., Laskin O. L., Douglas J., Lapidus W. I., Schleif W. A., Whitley R. J., Hildebrand C., Byrnes V. W., Kappes J. C. A short-term clinical evaluation of L-697,661, a non-nucleoside inhibitor of HIV-1 reverse transcriptase. L-697,661 Working Group. N Engl J Med. 1993 Oct 7;329(15):1065–1072. doi: 10.1056/NEJM199310073291502. [DOI] [PubMed] [Google Scholar]
  27. Sardana V. V., Emini E. A., Gotlib L., Graham D. J., Lineberger D. W., Long W. J., Schlabach A. J., Wolfgang J. A., Condra J. H. Functional analysis of HIV-1 reverse transcriptase amino acids involved in resistance to multiple nonnucleoside inhibitors. J Biol Chem. 1992 Sep 5;267(25):17526–17530. [PubMed] [Google Scholar]
  28. Shih C. K., Rose J. M., Hansen G. L., Wu J. C., Bacolla A., Griffin J. A. Chimeric human immunodeficiency virus type 1/type 2 reverse transcriptases display reversed sensitivity to nonnucleoside analog inhibitors. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9878–9882. doi: 10.1073/pnas.88.21.9878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Spector S. A., Kennedy C., McCutchan J. A., Bozzette S. A., Straube R. G., Connor J. D., Richman D. D. The antiviral effect of zidovudine and ribavirin in clinical trials and the use of p24 antigen levels as a virologic marker. J Infect Dis. 1989 May;159(5):822–828. doi: 10.1093/infdis/159.5.822. [DOI] [PubMed] [Google Scholar]
  30. St Clair M. H., Martin J. L., Tudor-Williams G., Bach M. C., Vavro C. L., King D. M., Kellam P., Kemp S. D., Larder B. A. Resistance to ddI and sensitivity to AZT induced by a mutation in HIV-1 reverse transcriptase. Science. 1991 Sep 27;253(5027):1557–1559. doi: 10.1126/science.1716788. [DOI] [PubMed] [Google Scholar]
  31. Wu J. C., Warren T. C., Adams J., Proudfoot J., Skiles J., Raghavan P., Perry C., Potocki I., Farina P. R., Grob P. M. A novel dipyridodiazepinone inhibitor of HIV-1 reverse transcriptase acts through a nonsubstrate binding site. Biochemistry. 1991 Feb 26;30(8):2022–2026. doi: 10.1021/bi00222a003. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES