Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1994 Dec;68(12):8125–8130. doi: 10.1128/jvi.68.12.8125-8130.1994

Selective induction of immune responses by cytokines coexpressed in recombinant fowlpox virus.

K H Leong 1, A J Ramsay 1, D B Boyle 1, I A Ramshaw 1
PMCID: PMC237277  PMID: 7966603

Abstract

Avipoxviruses have recently been studied as potential vectors for the delivery of heterologous vaccine antigen. Because these viruses abortively infect mammalian cells yet still effectively present encoded foreign genes to the host immune system, they offer a safer but effective alternative to other live virus vectors. We have examined the effect of coexpressing the cytokine interleukin-6 or gamma interferon on immune responses to a recombinant fowlpox virus expressing influenza virus hemagglutinin. The encoded cytokine was expressed for prolonged periods in infected cell culture with little cytopathic effect due to the abortive nature of the infection. In mice, vector-expressed cytokine dramatically altered immune responses induced by the coexpressed hemagglutinin antigen. Expression of interleukin-6 augmented both primary systemic and mucosal antibody responses and primed for enhanced recall responses. In contrast, expression of gamma interferon markedly inhibited antibody responses without affecting the generation of cell-mediated immunity. The safety of these constructs was demonstrated in mice with severe combined immunodeficiency, and no side effects due to cytokine expression were observed. In summary, fowlpox virus vectors encoding cytokines represent a safe and effective vaccine strategy which may be used to selectively manipulate the immune response.

Full text

PDF
8125

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aarden L. A., De Groot E. R., Schaap O. L., Lansdorp P. M. Production of hybridoma growth factor by human monocytes. Eur J Immunol. 1987 Oct;17(10):1411–1416. doi: 10.1002/eji.1830171004. [DOI] [PubMed] [Google Scholar]
  2. Andrew M. E., Coupar B. E., Ada G. L., Boyle D. B. Cell-mediated immune responses to influenza virus antigens expressed by vaccinia virus recombinants. Microb Pathog. 1986 Oct;1(5):443–452. doi: 10.1016/0882-4010(86)90006-9. [DOI] [PubMed] [Google Scholar]
  3. Andrew M. E., Coupar B. E., Boyle D. B. Humoral and cell-mediated immune responses to recombinant vaccinia viruses in mice. Immunol Cell Biol. 1989 Oct;67(Pt 5):331–337. doi: 10.1038/icb.1989.48. [DOI] [PubMed] [Google Scholar]
  4. Boyle D. B., Coupar B. E. A dominant selectable marker for the construction of recombinant poxviruses. Gene. 1988 May 15;65(1):123–128. doi: 10.1016/0378-1119(88)90424-6. [DOI] [PubMed] [Google Scholar]
  5. Boyle D. B., Coupar B. E. Construction of recombinant fowlpox viruses as vectors for poultry vaccines. Virus Res. 1988 Jun;10(4):343–356. doi: 10.1016/0168-1702(88)90075-5. [DOI] [PubMed] [Google Scholar]
  6. Boyle D. B., Coupar B. E., Gibbs A. J., Seigman L. J., Both G. W. Fowlpox virus thymidine kinase: nucleotide sequence and relationships to other thymidine kinases. Virology. 1987 Feb;156(2):355–365. doi: 10.1016/0042-6822(87)90415-6. [DOI] [PubMed] [Google Scholar]
  7. Cadoz M., Strady A., Meignier B., Taylor J., Tartaglia J., Paoletti E., Plotkin S. Immunisation with canarypox virus expressing rabies glycoprotein. Lancet. 1992 Jun 13;339(8807):1429–1432. doi: 10.1016/0140-6736(92)92027-d. [DOI] [PubMed] [Google Scholar]
  8. Carpenter E. A., Ruby J., Ramshaw I. A. IFN-gamma, TNF, and IL-6 production by vaccinia virus immune spleen cells. An in vitro study. J Immunol. 1994 Mar 15;152(6):2652–2659. [PubMed] [Google Scholar]
  9. Chiu C. P., Moulds C., Coffman R. L., Rennick D., Lee F. Multiple biological activities are expressed by a mouse interleukin 6 cDNA clone isolated from bone marrow stromal cells. Proc Natl Acad Sci U S A. 1988 Oct;85(19):7099–7103. doi: 10.1073/pnas.85.19.7099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cooney E. L., Collier A. C., Greenberg P. D., Coombs R. W., Zarling J., Arditti D. E., Hoffman M. C., Hu S. L., Corey L. Safety of and immunological response to a recombinant vaccinia virus vaccine expressing HIV envelope glycoprotein. Lancet. 1991 Mar 9;337(8741):567–572. doi: 10.1016/0140-6736(91)91636-9. [DOI] [PubMed] [Google Scholar]
  11. Coupar B. E., Teo T., Boyle D. B. Restriction endonuclease mapping of the fowlpox virus genome. Virology. 1990 Nov;179(1):159–167. doi: 10.1016/0042-6822(90)90285-y. [DOI] [PubMed] [Google Scholar]
  12. Cox W. I., Tartaglia J., Paoletti E. Induction of cytotoxic T lymphocytes by recombinant canarypox (ALVAC) and attenuated vaccinia (NYVAC) viruses expressing the HIV-1 envelope glycoprotein. Virology. 1993 Aug;195(2):845–850. doi: 10.1006/viro.1993.1442. [DOI] [PubMed] [Google Scholar]
  13. Etlinger H. M., Altenburger W. Overcoming inhibition of antibody responses to a malaria recombinant vaccinia virus caused by prior exposure to wild type virus. Vaccine. 1991 Jul;9(7):470–472. doi: 10.1016/0264-410x(91)90030-a. [DOI] [PubMed] [Google Scholar]
  14. Gray P. W., Goeddel D. V. Cloning and expression of murine immune interferon cDNA. Proc Natl Acad Sci U S A. 1983 Oct;80(19):5842–5846. doi: 10.1073/pnas.80.19.5842. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Heine H. G., Boyle D. B. Infectious bursal disease virus structural protein VP2 expressed by a fowlpox virus recombinant confers protection against disease in chickens. Arch Virol. 1993;131(3-4):277–292. doi: 10.1007/BF01378632. [DOI] [PubMed] [Google Scholar]
  16. Hocart M. J., Mackenzie J. S., Stewart G. A. The IgG subclass responses to influenza virus haemagglutinin in the mouse: effect of route of inoculation. J Gen Virol. 1989 Apr;70(Pt 4):809–818. doi: 10.1099/0022-1317-70-4-809. [DOI] [PubMed] [Google Scholar]
  17. Jones P. D., Ada G. L. Influenza virus-specific antibody-secreting cells in the murine lung during primary influenza virus infection. J Virol. 1986 Nov;60(2):614–619. doi: 10.1128/jvi.60.2.614-619.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Karupiah G., Coupar B. E., Andrew M. E., Boyle D. B., Phillips S. M., Müllbacher A., Blanden R. V., Ramshaw I. A. Elevated natural killer cell responses in mice infected with recombinant vaccinia virus encoding murine IL-2. J Immunol. 1990 Jan 1;144(1):290–298. [PubMed] [Google Scholar]
  19. Kishimoto T., Hirano T. Molecular regulation of B lymphocyte response. Annu Rev Immunol. 1988;6:485–512. doi: 10.1146/annurev.iy.06.040188.002413. [DOI] [PubMed] [Google Scholar]
  20. Kohonen-Corish M. R., King N. J., Woodhams C. E., Ramshaw I. A. Immunodeficient mice recover from infection with vaccinia virus expressing interferon-gamma. Eur J Immunol. 1990 Jan;20(1):157–161. doi: 10.1002/eji.1830200123. [DOI] [PubMed] [Google Scholar]
  21. Kumar S., Boyle D. B. A poxvirus bidirectional promoter element with early/late and late functions. Virology. 1990 Nov;179(1):151–158. doi: 10.1016/0042-6822(90)90284-x. [DOI] [PubMed] [Google Scholar]
  22. Li S., Rodrigues M., Rodriguez D., Rodriguez J. R., Esteban M., Palese P., Nussenzweig R. S., Zavala F. Priming with recombinant influenza virus followed by administration of recombinant vaccinia virus induces CD8+ T-cell-mediated protective immunity against malaria. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5214–5218. doi: 10.1073/pnas.90.11.5214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mosmann T. R., Coffman R. L. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol. 1989;7:145–173. doi: 10.1146/annurev.iy.07.040189.001045. [DOI] [PubMed] [Google Scholar]
  24. Nazerian K., Lee L. F., Yanagida N., Ogawa R. Protection against Marek's disease by a fowlpox virus recombinant expressing the glycoprotein B of Marek's disease virus. J Virol. 1992 Mar;66(3):1409–1413. doi: 10.1128/jvi.66.3.1409-1413.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ramsay A. J., Husband A. J., Ramshaw I. A., Bao S., Matthaei K. I., Koehler G., Kopf M. The role of interleukin-6 in mucosal IgA antibody responses in vivo. Science. 1994 Apr 22;264(5158):561–563. doi: 10.1126/science.8160012. [DOI] [PubMed] [Google Scholar]
  26. Ramsay A. J., Kohonen-Corish M. Interleukin-5 expressed by a recombinant virus vector enhances specific mucosal IgA responses in vivo. Eur J Immunol. 1993 Dec;23(12):3141–3145. doi: 10.1002/eji.1830231215. [DOI] [PubMed] [Google Scholar]
  27. Ramshaw I., Ruby J., Ramsay A., Ada G., Karupiah G. Expression of cytokines by recombinant vaccinia viruses: a model for studying cytokines in virus infections in vivo. Immunol Rev. 1992 Jun;127:157–182. doi: 10.1111/j.1600-065x.1992.tb01413.x. [DOI] [PubMed] [Google Scholar]
  28. Reynolds D. S., Boom W. H., Abbas A. K. Inhibition of B lymphocyte activation by interferon-gamma. J Immunol. 1987 Aug 1;139(3):767–773. [PubMed] [Google Scholar]
  29. Salk J., Bretscher P. A., Salk P. L., Clerici M., Shearer G. M. A strategy for prophylactic vaccination against HIV. Science. 1993 May 28;260(5112):1270–1272. doi: 10.1126/science.8098553. [DOI] [PubMed] [Google Scholar]
  30. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Somogyi P., Frazier J., Skinner M. A. Fowlpox virus host range restriction: gene expression, DNA replication, and morphogenesis in nonpermissive mammalian cells. Virology. 1993 Nov;197(1):439–444. doi: 10.1006/viro.1993.1608. [DOI] [PubMed] [Google Scholar]
  32. Spehner D., Drillien R., Lecocq J. P. Construction of fowlpox virus vectors with intergenic insertions: expression of the beta-galactosidase gene and the measles virus fusion gene. J Virol. 1990 Feb;64(2):527–533. doi: 10.1128/jvi.64.2.527-533.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Suematsu S., Matsuda T., Aozasa K., Akira S., Nakano N., Ohno S., Miyazaki J., Yamamura K., Hirano T., Kishimoto T. IgG1 plasmacytosis in interleukin 6 transgenic mice. Proc Natl Acad Sci U S A. 1989 Oct;86(19):7547–7551. doi: 10.1073/pnas.86.19.7547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Taylor J., Paoletti E. Fowlpox virus as a vector in non-avian species. Vaccine. 1988 Dec;6(6):466–468. doi: 10.1016/0264-410x(88)90091-6. [DOI] [PubMed] [Google Scholar]
  35. Taylor J., Weinberg R., Languet B., Desmettre P., Paoletti E. Recombinant fowlpox virus inducing protective immunity in non-avian species. Vaccine. 1988 Dec;6(6):497–503. doi: 10.1016/0264-410x(88)90100-4. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES