Abstract
Studies of genetic resistance to flavivirus infection in laboratory mice have led to the development of a single model in which resistance is conferred by an autosomal dominant gene designated Flvr. Because of evidence suggesting that wild mice carry virus resistance genes which are not present in laboratory mice, we compared flavivirus resistance in the inbred strains CASA/Rk, CAST/Ei, and MOLD/Rk, which are derived directly from wild mice, and the congenic strains C3H/RV (Flvr/Flvr) and C3H/HeJ (Flvs/Flvs). Resistance to the Murray Valley encephalitis virus strain OR2 and the 17D vaccine strain of yellow fever virus was assessed by determining the lethality of intracerebral infection and by measuring virus replication in the brain. The resistance of the CASA/Rk and CAST/Ei strains resembled the resistance of C3H/RV mice, whereas the resistance of the MOLD/Rk strain was intermediate between those of C3H/RV and C3H/HeJ mice. Genetic analyses showed that resistance in both the CASA/Rk and MOLD/Rk strains is conferred by single autosomal dominant alleles at the Flv locus. Our data indicate that flavivirus resistance in the CASA/Rk strain is due to a gene which is similar or identical to Flvr, whereas resistance in the MOLD/Rk strain is due to a previously undescribed gene which we designate Flvmr to indicate minor resistance to flavivirus infection. Since genetic resistance to flaviviruses is rare in laboratory mice, the CASA/Rk and MOLD/Rk strains will be valuable for further investigation of this phenomenon.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Benenson M. W., Top F. H., Jr, Gresso W., Ames C. W., Altstatt L. B. The virulence to man of Japanese encephalitis virus in Thailand. Am J Trop Med Hyg. 1975 Nov;24(6 Pt 1):974–980. doi: 10.4269/ajtmh.1975.24.974. [DOI] [PubMed] [Google Scholar]
- Bravo J. R., Guzmán M. G., Kouri G. P. Why dengue haemorrhagic fever in Cuba? 1. Individual risk factors for dengue haemorrhagic fever/dengue shock syndrome (DHF/DSS). Trans R Soc Trop Med Hyg. 1987;81(5):816–820. doi: 10.1016/0035-9203(87)90041-1. [DOI] [PubMed] [Google Scholar]
- Brinton M. A. Analysis of extracellular West Nile virus particles produced by cell cultures from genetically resistant and susceptible mice indicates enhanced amplification of defective interfering particles by resistant cultures. J Virol. 1983 Jun;46(3):860–870. doi: 10.1128/jvi.46.3.860-870.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brinton M. A., Arnheiter H., Haller O. Interferon independence of genetically controlled resistance to flaviviruses. Infect Immun. 1982 Apr;36(1):284–288. doi: 10.1128/iai.36.1.284-288.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brinton M. A., Fernandez A. V. A replication-efficient mutant of West Nile virus is insensitive to DI particle interference. Virology. 1983 Aug;129(1):107–115. doi: 10.1016/0042-6822(83)90399-9. [DOI] [PubMed] [Google Scholar]
- Calisher C. H., Karabatsos N., Dalrymple J. M., Shope R. E., Porterfield J. S., Westaway E. G., Brandt W. E. Antigenic relationships between flaviviruses as determined by cross-neutralization tests with polyclonal antisera. J Gen Virol. 1989 Jan;70(Pt 1):37–43. doi: 10.1099/0022-1317-70-1-37. [DOI] [PubMed] [Google Scholar]
- Darnell M. B., Koprowski H. Genetically determined resistance to infection with group B arboviruses. II. Increased production of interfering particles in cell cultures from resistant mice. J Infect Dis. 1974 Mar;129(3):248–256. doi: 10.1093/infdis/129.3.248. [DOI] [PubMed] [Google Scholar]
- Darnell M. B., Koprowski H., Lagerspetz K. Genetically determined resistance to infection with group B arboviruses. I. Distribution of the resistance gene among various mouse populations and characteristics of gene expression in vivo. J Infect Dis. 1974 Mar;129(3):240–247. doi: 10.1093/infdis/129.3.240. [DOI] [PubMed] [Google Scholar]
- GOODMAN G. T., KOPROWSKI H. Study of the mechanism of innate resistance to virus infection. J Cell Comp Physiol. 1962 Jun;59:333–373. doi: 10.1002/jcp.1030590313. [DOI] [PubMed] [Google Scholar]
- Groves M. G., Rosenstreich D. L., Taylor B. A., Osterman J. V. Host defenses in experimental scrub typhus: mapping the gene that controls natural resistance in mice. J Immunol. 1980 Sep;125(3):1395–1399. [PubMed] [Google Scholar]
- Gröschel D., Koprowski H. Development of a virus-resistant inbred mouse strain for the study of innate resistance to Arbo B viruses. Arch Gesamte Virusforsch. 1965;17(3):379–391. doi: 10.1007/BF01241192. [DOI] [PubMed] [Google Scholar]
- Jacoby R. O., Bhatt P. N. Genetic resistance to lethal flavivirus encephalitis. I. Infection of congenic mice with Banzi virus. J Infect Dis. 1976 Aug;134(2):158–165. doi: 10.1093/infdis/134.2.158. [DOI] [PubMed] [Google Scholar]
- Jerrells T. R., Osterman J. V. Host defenses in experimental scrub typhus: inflammatory response of congenic C3H mice differing at the Ric gene. Infect Immun. 1981 Mar;31(3):1014–1022. doi: 10.1128/iai.31.3.1014-1022.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liehne C. G., Leivers S., Stanley N. F., Alpers M. P., Paul S., Liehne P. F., Chan K. H. Ord River arboviruses--isolations from mosquitoes. Aust J Exp Biol Med Sci. 1976 Oct;54(5):499–504. doi: 10.1038/icb.1976.50. [DOI] [PubMed] [Google Scholar]
- Lopez C. Genetics of natural resistance to herpesvirus infections in mice. Nature. 1975 Nov 13;258(5531):152–153. doi: 10.1038/258152a0. [DOI] [PubMed] [Google Scholar]
- Lynch C. J., Hughes T. P. The Inheritance of Susceptibility to Yellow Fever Encephalitis in Mice. Genetics. 1936 Mar;21(2):104–112. doi: 10.1093/genetics/21.2.104. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Monath T. P., Craven R. B., Adjukiewicz A., Germain M., Francy D. B., Ferrara L., Samba E. M., N'Jie H., Cham K., Fitzgerald S. A. Yellow fever in the Gambia, 1978--1979: epidemiologic aspects with observations on the occurrence of orungo virus infections. Am J Trop Med Hyg. 1980 Sep;29(5):912–928. doi: 10.4269/ajtmh.1980.29.912. [DOI] [PubMed] [Google Scholar]
- Monath T. P., Cropp C. B., Bowen G. S., Kemp G. E., Mitchell C. J., Gardner J. J. Variation in virulence for mice and rhesus monkeys among St. Louis encephalitis virus strains of different origin. Am J Trop Med Hyg. 1980 Sep;29(5):948–962. doi: 10.4269/ajtmh.1980.29.948. [DOI] [PubMed] [Google Scholar]
- Rosenstreich D. L., Weinblatt A. C., O'Brien A. D. Genetic control of resistance to infection in mice. Crit Rev Immunol. 1982 Jun;3(4):263–330. [PubMed] [Google Scholar]
- SABIN A. B. Genetic, hormonal and age factors in natural resistance to certain viruses. Ann N Y Acad Sci. 1952 Jul 10;54(6):936–944. doi: 10.1111/j.1749-6632.1952.tb39968.x. [DOI] [PubMed] [Google Scholar]
- Sabin A. B. Nature of Inherited Resistance to Viruses Affecting the Nervous System. Proc Natl Acad Sci U S A. 1952 Jun;38(6):540–546. doi: 10.1073/pnas.38.6.540. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sangster M. Y., Shellam G. R. Genetically controlled resistance to flaviviruses within the house mouse complex of species. Curr Top Microbiol Immunol. 1986;127:313–318. doi: 10.1007/978-3-642-71304-0_37. [DOI] [PubMed] [Google Scholar]
- Shellam G. R., Flexman J. P. Genetically determined resistance to murine cytomegalovirus and herpes simplex virus in newborn mice. J Virol. 1986 Apr;58(1):152–156. doi: 10.1128/jvi.58.1.152-156.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Staats J. Standardized Nomenclature for Inbred Strains of Mice: eighth listing. Cancer Res. 1985 Mar;45(3):945–977. [PubMed] [Google Scholar]
- de Vries R. R., Meera Khan P., Bernini L. F., van Loghem E., van Rood J. J. Genetic control of survival in epidemics. J Immunogenet. 1979 Aug;6(4):271–287. doi: 10.1111/j.1744-313x.1979.tb00684.x. [DOI] [PubMed] [Google Scholar]