Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1999 Aug;80(12):1867–1874. doi: 10.1038/sj.bjc.6690614

Different adhesion properties of highly and poorly metastatic HT-29 colon carcinoma cells with extracellular matrix components: role of integrin expression and cytoskeletal components

J Haier 1, M Nasralla 1, G L Nicolson 1
PMCID: PMC2374274  PMID: 10471033

Abstract

Integrin-mediated tumour cell adhesion to extracellular matrix (ECM) components is an important step in the development of metastatic lesions. Thus, integrin expression and integrin-mediated adhesion of colon carcinoma cells to various ECM components was examined. Poorly (HT-29P) and highly (HT-29LMM) liver-metastatic colon carcinoma cells were used to study the rates of adhesion to collagen I (C I), collagen IV (C IV), laminin (LN), fibronectin (FN), or vitronectin (VN) in a static adhesion assay (10–120 min). Cells were untreated or treated with oligopeptides (RGD, GRGDS, YIGSR, RGES), anti-integrin antibodies, or colchicine, nocodazole, cycloheximide, acrylamide or cytochalasin D (to disrupt cytoskeletal structures). Both cell lines expressed similar patterns of integrin expression (α2, α3, α6, αv, β1, β4 and β5) by immunocytochemistry and immunoprecipitation. HT-29LMM cells showed significantly higher rates of adhesion to LN (P < 0.001) and FN (P < 0.001), but significantly poorer rates of adhesion to C I (P < 0.05) and C IV (P < 0.001) than HT-29P cells, respectively, adhesion to VN was insignificant. RGD and GRGDS inhibited HT-29LMM cell adhesion to FN only. Pretreatment with anti-β1 or anti-α2 integrin subunits suppressed adhesion to C I and C IV, and adhesion to LN was inhibited with anti-β1 or anti-α6 integrin. Anti-β1 or anti-αv blocked adhesion to FN. Pretreatment of cells with cytochalasin D, cycloheximide or acrylamide inhibited adhesive interactions of both cell lines to the ECM components. In contrast, colchicine and nocodazole had no effect. The results demonstrate that adhesion of HT-29 cells to ECM is mediated, in part, by different integrins, depending on the substrate. Poorly and highly metastatic HT-29 cells possessed different patterns of adhesion to the various ECM substrates, but these differences were not due to different expression of integrin subunits. The results also suggested that the initial adhesion of poorly or highly metastatic HT-29 cells to ECM components requires, in part, the presence of native action and intermediate filaments, but not of microtubules. Thus the adhesion of tumour cells to ECM components may be dependent on signal transduction and assembly of microfilaments. © 1999 Cancer Research Campaign

Keywords: colorectal cancer, metastasis, adhesion, cytoskeleton, ECM, integrins

Full Text

The Full Text of this article is available as a PDF (166.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agrez M. V., Bates R. C. Colorectal cancer and the integrin family of cell adhesion receptors: current status and future directions. Eur J Cancer. 1994;30A(14):2166–2170. doi: 10.1016/0959-8049(94)00473-i. [DOI] [PubMed] [Google Scholar]
  2. Akiyama S. K., Yamada S. S., Yamada K. M., LaFlamme S. E. Transmembrane signal transduction by integrin cytoplasmic domains expressed in single-subunit chimeras. J Biol Chem. 1994 Jun 10;269(23):15961–15964. [PubMed] [Google Scholar]
  3. Ben-Ze'ev A. Cytoskeletal and adhesion proteins as tumor suppressors. Curr Opin Cell Biol. 1997 Feb;9(1):99–108. doi: 10.1016/s0955-0674(97)80158-5. [DOI] [PubMed] [Google Scholar]
  4. Ben-Ze'ev A., Raz A. Relationship between the organization and synthesis of vimentin and the metastatic capability of B16 melanoma cells. Cancer Res. 1985 Jun;45(6):2632–2641. [PubMed] [Google Scholar]
  5. Botteri F. M., Ballmer-Hofer K., Rajput B., Nagamine Y. Disruption of cytoskeletal structures results in the induction of the urokinase-type plasminogen activator gene expression. J Biol Chem. 1990 Aug 5;265(22):13327–13334. [PubMed] [Google Scholar]
  6. Boyd D., Florent G., Childress-Fields K., Brattain M. G. Alteration in the behavior of a colon carcinoma cell line by extracellular matrix components. Cancer Lett. 1988 Jul;41(1):81–90. doi: 10.1016/0304-3835(88)90058-4. [DOI] [PubMed] [Google Scholar]
  7. Burtin P., Chavanel G., Foidart J. M. Immunofluorescence study of the antigens of the basement membrane and the peritumoral stroma in human colonic adenocarcinomas. Ann N Y Acad Sci. 1983;420:229–236. doi: 10.1111/j.1749-6632.1983.tb22208.x. [DOI] [PubMed] [Google Scholar]
  8. Chen Y. P., O'Toole T. E., Shipley T., Forsyth J., LaFlamme S. E., Yamada K. M., Shattil S. J., Ginsberg M. H. "Inside-out" signal transduction inhibited by isolated integrin cytoplasmic domains. J Biol Chem. 1994 Jul 15;269(28):18307–18310. [PubMed] [Google Scholar]
  9. Chopra H., Fligiel S. E., Hatfield J. S., Nelson K. K., Diglio C. A., Taylor J. D., Honn K. V. An in vivo study of the role of the tumor cell cytoskeleton in tumor cell-platelet-endothelial cell interactions. Cancer Res. 1990 Dec 1;50(23):7686–7696. [PubMed] [Google Scholar]
  10. Chopra H., Hatfield J. S., Chang Y. S., Grossi I. M., Fitzgerald L. A., O'Gara C. Y., Marnett L. J., Diglio C. A., Taylor J. D., Honn K. V. Role of tumor cytoskeleton and membrane glycoprotein IRGpIIb/IIIa in platelet adhesion to tumor cell membrane and tumor cell-induced platelet aggregation. Cancer Res. 1988 Jul 1;48(13):3787–3800. [PubMed] [Google Scholar]
  11. Chopra H., Timar J., Chen Y. Q., Rong X. H., Grossi I. M., Fitzgerald L. A., Taylor J. D., Honn K. V. The lipoxygenase metabolite 12(S)-HETE induces a cytoskeleton-dependent increase in surface expression of integrin alpha IIb beta 3 on melanoma cells. Int J Cancer. 1991 Nov 11;49(5):774–786. doi: 10.1002/ijc.2910490524. [DOI] [PubMed] [Google Scholar]
  12. Daneker G. W., Jr, Piazza A. J., Steele G. D., Jr, Mercurio A. M. Relationship between extracellular matrix interactions and degree of differentiation in human colon carcinoma cell lines. Cancer Res. 1989 Feb 1;49(3):681–686. [PubMed] [Google Scholar]
  13. Doerr R., Zvibel I., Chiuten D., D'Olimpio J., Reid L. M. Clonal growth of tumors on tissue-specific biomatrices and correlation with organ site specificity of metastases. Cancer Res. 1989 Jan 15;49(2):384–392. [PubMed] [Google Scholar]
  14. Gong J., Wang D., Sun L., Zborowska E., Willson J. K., Brattain M. G. Role of alpha 5 beta 1 integrin in determining malignant properties of colon carcinoma cells. Cell Growth Differ. 1997 Jan;8(1):83–90. [PubMed] [Google Scholar]
  15. Grigioni W. F., Biagini G., Errico A. D., Milani M., Villanacci V., Garbisa S., Mattioli S., Gozzetti G., Mancini A. M. Behaviour of basement membrane antigens in gastric and colorectal cancer. Immunohistochemical study. Acta Pathol Jpn. 1986 Feb;36(2):173–184. doi: 10.1111/j.1440-1827.1986.tb01471.x. [DOI] [PubMed] [Google Scholar]
  16. Guan J. L., Trevithick J. E., Hynes R. O. Fibronectin/integrin interaction induces tyrosine phosphorylation of a 120-kDa protein. Cell Regul. 1991 Nov;2(11):951–964. doi: 10.1091/mbc.2.11.951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gumbiner B. M. Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell. 1996 Feb 9;84(3):345–357. doi: 10.1016/s0092-8674(00)81279-9. [DOI] [PubMed] [Google Scholar]
  18. Gurland G., Gundersen G. G. Stable, detyrosinated microtubules function to localize vimentin intermediate filaments in fibroblasts. J Cell Biol. 1995 Dec;131(5):1275–1290. doi: 10.1083/jcb.131.5.1275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Haier J., Nasralla M., Buhr H. J., Nicolson G. L. Differente Integrin-vermittelte Adhäsion von hoch hepatisch metastasierenden und gering metastasierenden Kolon-Karzinom-Zellen an extrazellulärer Matrix. Langenbecks Arch Chir Suppl Kongressbd. 1998;115(Suppl 1):307–313. [PubMed] [Google Scholar]
  20. Hendrix M. J., Seftor E. A., Chu Y. W., Trevor K. T., Seftor R. E. Role of intermediate filaments in migration, invasion and metastasis. Cancer Metastasis Rev. 1996 Dec;15(4):507–525. doi: 10.1007/BF00054016. [DOI] [PubMed] [Google Scholar]
  21. Hendrix M. J., Seftor E. A., Seftor R. E., Trevor K. T. Experimental co-expression of vimentin and keratin intermediate filaments in human breast cancer cells results in phenotypic interconversion and increased invasive behavior. Am J Pathol. 1997 Feb;150(2):483–495. [PMC free article] [PubMed] [Google Scholar]
  22. Herzberg F., Schöning M., Schirner M., Topp M., Thiel E., Kreuser E. D. IL-4 and TNF-alpha induce changes in integrin expression and adhesive properties and decrease the lung-colonizing potential of HT-29 colon carcinoma cells. Clin Exp Metastasis. 1996 Mar;14(2):165–175. doi: 10.1007/BF00121213. [DOI] [PubMed] [Google Scholar]
  23. Horwitz A., Duggan K., Buck C., Beckerle M. C., Burridge K. Interaction of plasma membrane fibronectin receptor with talin--a transmembrane linkage. Nature. 1986 Apr 10;320(6062):531–533. doi: 10.1038/320531a0. [DOI] [PubMed] [Google Scholar]
  24. Inagaki N., Goto H., Ogawara M., Nishi Y., Ando S., Inagaki M. Spatial patterns of Ca2+ signals define intracellular distribution of a signaling by Ca2+/Calmodulin-dependent protein kinase II. J Biol Chem. 1997 Oct 3;272(40):25195–25199. doi: 10.1074/jbc.272.40.25195. [DOI] [PubMed] [Google Scholar]
  25. Inufusa H., Nakamura M., Adachi T., Nakatani Y., Shindo K., Yasutomi M., Matsuura H. Localization of oncofetal and normal fibronectin in colorectal cancer. Correlation with histologic grade, liver metastasis, and prognosis. Cancer. 1995 Jun 15;75(12):2802–2808. doi: 10.1002/1097-0142(19950615)75:12<2802::aid-cncr2820751204>3.0.co;2-o. [DOI] [PubMed] [Google Scholar]
  26. Jewell K., Kapron-Bras C., Jeevaratnam P., Dedhar S. Stimulation of tyrosine phosphorylation of distinct proteins in response to antibody-mediated ligation and clustering of alpha 3 and alpha 6 integrins. J Cell Sci. 1995 Mar;108(Pt 3):1165–1174. doi: 10.1242/jcs.108.3.1165. [DOI] [PubMed] [Google Scholar]
  27. Kemperman H., Wijnands Y. M., Roos E. alphaV Integrins on HT-29 colon carcinoma cells: adhesion to fibronectin is mediated solely by small amounts of alphaVbeta6, and alphaVbeta5 is codistributed with actin fibers. Exp Cell Res. 1997 Jul 10;234(1):156–164. doi: 10.1006/excr.1997.3599. [DOI] [PubMed] [Google Scholar]
  28. Kim W. H., Jun S. H., Kibbey M. C., Thompson E. W., Kleinman H. K. Expression of beta 1 integrin in laminin-adhesion-selected human colon cancer cell lines of varying tumorigenicity. Invasion Metastasis. 1994;14(1-6):147–155. [PubMed] [Google Scholar]
  29. Kornberg L. J., Earp H. S., Turner C. E., Prockop C., Juliano R. L. Signal transduction by integrins: increased protein tyrosine phosphorylation caused by clustering of beta 1 integrins. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8392–8396. doi: 10.1073/pnas.88.19.8392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Lehmann M., Rabenandrasana C., Tamura R., Lissitzky J. C., Quaranta V., Pichon J., Marvaldi J. A monoclonal antibody inhibits adhesion to fibronectin and vitronectin of a colon carcinoma cell line and recognizes the integrins alpha v beta 3, alpha v beta 5, and alpha v beta 6. Cancer Res. 1994 Apr 15;54(8):2102–2107. [PubMed] [Google Scholar]
  31. Lindmark G., Gerdin B., Påhlman L., Glimelius B., Gehlsen K., Rubin K. Interconnection of integrins alpha 2 and alpha 3 and structure of the basal membrane in colorectal cancer: relation to survival. Eur J Surg Oncol. 1993 Feb;19(1):50–60. [PubMed] [Google Scholar]
  32. Mainiero F., Pepe A., Wary K. K., Spinardi L., Mohammadi M., Schlessinger J., Giancotti F. G. Signal transduction by the alpha 6 beta 4 integrin: distinct beta 4 subunit sites mediate recruitment of Shc/Grb2 and association with the cytoskeleton of hemidesmosomes. EMBO J. 1995 Sep 15;14(18):4470–4481. doi: 10.1002/j.1460-2075.1995.tb00126.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Meijne A. M., Casey D. M., Feltkamp C. A., Roos E. Immuno-EM localization of the beta 1 integrin subunit in wet-cleaved fibronectin-adherent fibroblasts. J Cell Sci. 1994 May;107(Pt 5):1229–1239. doi: 10.1242/jcs.107.5.1229. [DOI] [PubMed] [Google Scholar]
  34. Miyamoto S., Akiyama S. K., Yamada K. M. Synergistic roles for receptor occupancy and aggregation in integrin transmembrane function. Science. 1995 Feb 10;267(5199):883–885. doi: 10.1126/science.7846531. [DOI] [PubMed] [Google Scholar]
  35. Mooney D. J., Langer R., Ingber D. E. Cytoskeletal filament assembly and the control of cell spreading and function by extracellular matrix. J Cell Sci. 1995 Jun;108(Pt 6):2311–2320. doi: 10.1242/jcs.108.6.2311. [DOI] [PubMed] [Google Scholar]
  36. Nicolson G. L. Cancer metastasis: tumor cell and host organ properties important in metastasis to specific secondary sites. Biochim Biophys Acta. 1988 Nov 15;948(2):175–224. doi: 10.1016/0304-419x(88)90010-8. [DOI] [PubMed] [Google Scholar]
  37. Nicolson G. L. Metastatic tumor cell interactions with endothelium, basement membrane and tissue. Curr Opin Cell Biol. 1989 Oct;1(5):1009–1019. doi: 10.1016/0955-0674(89)90073-2. [DOI] [PubMed] [Google Scholar]
  38. Nicolson G. L. Organ specificity of tumor metastasis: role of preferential adhesion, invasion and growth of malignant cells at specific secondary sites. Cancer Metastasis Rev. 1988 Jun;7(2):143–188. doi: 10.1007/BF00046483. [DOI] [PubMed] [Google Scholar]
  39. Nicolson G. L. Tumor and host molecules important in the organ preference of metastasis. Semin Cancer Biol. 1991 Jun;2(3):143–154. [PubMed] [Google Scholar]
  40. Nicolson G. L. Tumor cell interactions with the vascular endothelium and their role in cancer metastasis. EXS. 1995;74:123–156. doi: 10.1007/978-3-0348-9070-0_7. [DOI] [PubMed] [Google Scholar]
  41. Ogawara M., Inagaki N., Tsujimura K., Takai Y., Sekimata M., Ha M. H., Imajoh-Ohmi S., Hirai S., Ohno S., Sugiura H. Differential targeting of protein kinase C and CaM kinase II signalings to vimentin. J Cell Biol. 1995 Nov;131(4):1055–1066. doi: 10.1083/jcb.131.4.1055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Orian-Rousseau V., Aberdam D., Rousselle P., Messent A., Gavrilovic J., Meneguzzi G., Kedinger M., Simon-Assmann P. Human colonic cancer cells synthesize and adhere to laminin-5. Their adhesion to laminin-5 involves multiple receptors among which is integrin alpha2beta1. J Cell Sci. 1998 Jul 30;111(Pt 14):1993–2004. doi: 10.1242/jcs.111.14.1993. [DOI] [PubMed] [Google Scholar]
  43. Price J. E., Daniels L. M., Campbell D. E., Giavazzi R. Organ distribution of experimental metastases of a human colorectal carcinoma injected in nude mice. Clin Exp Metastasis. 1989 Jan-Feb;7(1):55–68. doi: 10.1007/BF02057181. [DOI] [PubMed] [Google Scholar]
  44. Rabinovitz I., Mercurio A. M. The integrin alpha 6 beta 4 and the biology of carcinoma. Biochem Cell Biol. 1996;74(6):811–821. doi: 10.1139/o96-087. [DOI] [PubMed] [Google Scholar]
  45. Sawada H., Wakabayashi H., Nawa A., Mora E., Cavanaugh P. G., Nicolson G. L. Differential motility stimulation but not growth stimulation or adhesion of metastatic human colorectal carcinoma cells by target organ-derived liver sinusoidal endothelial cells. Clin Exp Metastasis. 1996 May;14(3):308–313. doi: 10.1007/BF00053904. [DOI] [PubMed] [Google Scholar]
  46. Schreiner C., Bauer J., Margolis M., Juliano R. L. Expression and role of integrins in adhesion of human colonic carcinoma cells to extracellular matrix components. Clin Exp Metastasis. 1991 Mar-Apr;9(2):163–178. doi: 10.1007/BF01756387. [DOI] [PubMed] [Google Scholar]
  47. Schwartz M. A., Schaller M. D., Ginsberg M. H. Integrins: emerging paradigms of signal transduction. Annu Rev Cell Dev Biol. 1995;11:549–599. doi: 10.1146/annurev.cb.11.110195.003001. [DOI] [PubMed] [Google Scholar]
  48. Seftor R. E., Seftor E. A., Gehlsen K. R., Stetler-Stevenson W. G., Brown P. D., Ruoslahti E., Hendrix M. J. Role of the alpha v beta 3 integrin in human melanoma cell invasion. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1557–1561. doi: 10.1073/pnas.89.5.1557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Seufferlein T., Rozengurt E. Lysophosphatidic acid stimulates tyrosine phosphorylation of focal adhesion kinase, paxillin, and p130. Signaling pathways and cross-talk with platelet-derived growth factor. J Biol Chem. 1994 Mar 25;269(12):9345–9351. [PubMed] [Google Scholar]
  50. Sharpe A. H., Chen L. B., Murphy J. R., Fields B. N. Specific disruption of vimentin filament organization in monkey kidney CV-1 cells by diphtheria toxin, exotoxin A, and cycloheximide. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7267–7271. doi: 10.1073/pnas.77.12.7267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Stallmach A., von Lampe B., Matthes H., Bornhöft G., Riecken E. O. Diminished expression of integrin adhesion molecules on human colonic epithelial cells during the benign to malign tumour transformation. Gut. 1992 Mar;33(3):342–346. doi: 10.1136/gut.33.3.342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Streit M., Schmidt R., Hilgenfeld R. U., Thiel E., Kreuser E. D. Adhesion receptors in malignant transformation and dissemination of gastrointestinal tumors. Recent Results Cancer Res. 1996;142:19–50. doi: 10.1007/978-3-642-80035-1_3. [DOI] [PubMed] [Google Scholar]
  53. Takazawa H. [Association between expression of integrin (VLA-3, VLA-5) and malignancy in human colon-cancer]. Nihon Rinsho. 1995 Jul;53(7):1672–1677. [PubMed] [Google Scholar]
  54. Tang D. G., Diglio C. A., Honn K. V. Activation of microvascular endothelium by eicosanoid 12(S)-hydroxyeicosatetraenoic acid leads to enhanced tumor cell adhesion via up-regulation of surface expression of alpha v beta 3 integrin: a posttranscriptional, protein kinase C- and cytoskeleton-dependent process. Cancer Res. 1994 Feb 15;54(4):1119–1129. [PubMed] [Google Scholar]
  55. Tang D. G., Timar J., Grossi I. M., Renaud C., Kimler V. A., Diglio C. A., Taylor J. D., Honn K. V. The lipoxygenase metabolite, 12(S)-HETE, induces a protein kinase C-dependent cytoskeletal rearrangement and retraction of microvascular endothelial cells. Exp Cell Res. 1993 Aug;207(2):361–375. doi: 10.1006/excr.1993.1203. [DOI] [PubMed] [Google Scholar]
  56. Tomson A. M., Scholma J., Meijer B., Koning J. G., de Jong K. M., van der Werf M. Adhesion properties, intermediate filaments and malignant behaviour of head and neck squamous cell carcinoma cells in vitro. Clin Exp Metastasis. 1996 Nov;14(6):501–511. doi: 10.1007/BF00115110. [DOI] [PubMed] [Google Scholar]
  57. Varedi M., Ghahary A., Scott P. G., Tredget E. E. Cytoskeleton regulates expression of genes for transforming growth factor-beta 1 and extracellular matrix proteins in dermal fibroblasts. J Cell Physiol. 1997 Aug;172(2):192–199. doi: 10.1002/(SICI)1097-4652(199708)172:2<192::AID-JCP6>3.0.CO;2-J. [DOI] [PubMed] [Google Scholar]
  58. Wyatt T. A., Lincoln T. M., Pryzwansky K. B. Vimentin is transiently co-localized with and phosphorylated by cyclic GMP-dependent protein kinase in formyl-peptide-stimulated neutrophils. J Biol Chem. 1991 Nov 5;266(31):21274–21280. [PubMed] [Google Scholar]
  59. Yamada K. M., Geiger B. Molecular interactions in cell adhesion complexes. Curr Opin Cell Biol. 1997 Feb;9(1):76–85. doi: 10.1016/s0955-0674(97)80155-x. [DOI] [PubMed] [Google Scholar]
  60. Yamada K. M., Miyamoto S. Integrin transmembrane signaling and cytoskeletal control. Curr Opin Cell Biol. 1995 Oct;7(5):681–689. doi: 10.1016/0955-0674(95)80110-3. [DOI] [PubMed] [Google Scholar]
  61. Yatohgo T., Izumi M., Kashiwagi H., Hayashi M. Novel purification of vitronectin from human plasma by heparin affinity chromatography. Cell Struct Funct. 1988 Aug;13(4):281–292. doi: 10.1247/csf.13.281. [DOI] [PubMed] [Google Scholar]
  62. Young M. R., Charboneau S., Lozano Y., Djordjevic A., Young M. E. Activation of the protein kinase a signal transduction pathway by granulocyte-macrophage colony-stimulating factor or by genetic manipulation reduces cytoskeletal organization in Lewis lung carcinoma variants. Int J Cancer. 1994 Feb 1;56(3):446–451. doi: 10.1002/ijc.2910560327. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES