Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1999 Sep;81(1):37–42. doi: 10.1038/sj.bjc.6690648

Foscan® (mTHPC) photosensitized macrophage activation: enhancement of phagocytosis, nitric oxide release and tumour necrosis factor-α-mediated cytolytic activity

S Coutier 1, L Bezdetnaya 1, S Marchal 1, V Melnikova 1, I Belitchenko 1, J L Merlin 1, F Guillemin 1
PMCID: PMC2374281  PMID: 10487610

Abstract

Photodynamic activation of macrophage-like cells contributes to an effective outcome of photodynamic therapy (PDT) treatment. The possibility for an enhancement of macrophage activity by photosensitization with meta-tetra(hydroxyphenyl)chlorin (mTHPC) (1 μg ml−1) was studied in U937, monocyte cell line differentiated into macrophages (U937Φ cells). Phagocytic activity of U937Φ cells was evaluated by flow-cytometry monitoring of ingestion of fluorescein-labelled Escherichia coli particles. Increase in irradiation fluence up to 3.45 mJ cm−2 (corresponding irradiation time 15 s) resulted in significant increase in fluorescence signal (145%), while at higher light fluences the signal lowered down to the untreated control values. A light energy-dependent production of tumour necrosis factor-alpha (TNF-α) by photosensitized macrophages was further demonstrated using the L929 assay. The maximum TNF-α mediated cytolysis was observed at 28 mJ cm−2 and was 1.7-fold greater than that in control. In addition, we demonstrated a fluence-dependent increase in nitric oxide (NO) production by mTHPC-photosensitized macrophages. NO release increased gradually and reached a plateau after irradiation fluence of 6.9 mJ cm−2. Cytotoxicity measurements indicated that the observed manifestations of mTHPC-photosensitized macrophage activation took place under the sublethal light doses. The relevance of the present findings to clinical mTHPC-PDT is discussed. © 1999 Cancer Research Campaign

Keywords: photodynamic, mTHPC, macrophages, phagocytosis, TNF-α, nitric oxide

Full Text

The Full Text of this article is available as a PDF (103.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson C., Hrabovsky S., McKinley Y., Tubesing K., Tang H. P., Dunbar R., Mukhtar H., Elmets C. A. Phthalocyanine photodynamic therapy: disparate effects of pharmacologic inhibitors on cutaneous photosensitivity and on tumor regression. Photochem Photobiol. 1997 May;65(5):895–901. doi: 10.1111/j.1751-1097.1997.tb01940.x. [DOI] [PubMed] [Google Scholar]
  2. Asher A., Mulé J. J., Reichert C. M., Shiloni E., Rosenberg S. A. Studies on the anti-tumor efficacy of systemically administered recombinant tumor necrosis factor against several murine tumors in vivo. J Immunol. 1987 Feb 1;138(3):963–974. [PubMed] [Google Scholar]
  3. Brown E. J. Phagocytosis. Bioessays. 1995 Feb;17(2):109–117. doi: 10.1002/bies.950170206. [DOI] [PubMed] [Google Scholar]
  4. Collins H. L., Bancroft G. J. Cytokine enhancement of complement-dependent phagocytosis by macrophages: synergy of tumor necrosis factor-alpha and granulocyte-macrophage colony-stimulating factor for phagocytosis of Cryptococcus neoformans. Eur J Immunol. 1992 Jun;22(6):1447–1454. doi: 10.1002/eji.1830220617. [DOI] [PubMed] [Google Scholar]
  5. Dougherty T. J., Gomer C. J., Henderson B. W., Jori G., Kessel D., Korbelik M., Moan J., Peng Q. Photodynamic therapy. J Natl Cancer Inst. 1998 Jun 17;90(12):889–905. doi: 10.1093/jnci/90.12.889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gupta S., Ahmad N., Mukhtar H. Involvement of nitric oxide during phthalocyanine (Pc4) photodynamic therapy-mediated apoptosis. Cancer Res. 1998 May 1;58(9):1785–1788. [PubMed] [Google Scholar]
  7. Henderson B. W., Dougherty T. J. How does photodynamic therapy work? Photochem Photobiol. 1992 Jan;55(1):145–157. doi: 10.1111/j.1751-1097.1992.tb04222.x. [DOI] [PubMed] [Google Scholar]
  8. Hoff T., Spencker T., Emmendoerffer A., Goppelt-Struebe M. Effects of glucocorticoids on the TPA-induced monocytic differentiation. J Leukoc Biol. 1992 Aug;52(2):173–182. doi: 10.1002/jlb.52.2.173. [DOI] [PubMed] [Google Scholar]
  9. Korbelik M., Naraparaju V. R., Yamamoto N. Macrophage-directed immunotherapy as adjuvant to photodynamic therapy of cancer. Br J Cancer. 1997;75(2):202–207. doi: 10.1038/bjc.1997.34. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Krosl G., Korbelik M., Dougherty G. J. Induction of immune cell infiltration into murine SCCVII tumour by photofrin-based photodynamic therapy. Br J Cancer. 1995 Mar;71(3):549–555. doi: 10.1038/bjc.1995.108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Krosl G., Korbelik M., Krosl J., Dougherty G. J. Potentiation of photodynamic therapy-elicited antitumor response by localized treatment with granulocyte-macrophage colony-stimulating factor. Cancer Res. 1996 Jul 15;56(14):3281–3286. [PubMed] [Google Scholar]
  12. McHale A. P., McHale L. Use of a tetrazolium based colorimetric assay in assessing photoradiation therapy in vitro. Cancer Lett. 1988 Aug 30;41(3):315–321. doi: 10.1016/0304-3835(88)90293-5. [DOI] [PubMed] [Google Scholar]
  13. Merlin J. L., Azzi S., Lignon D., Ramacci C., Zeghari N., Guillemin F. MTT assays allow quick and reliable measurement of the response of human tumour cells to photodynamic therapy. Eur J Cancer. 1992;28A(8-9):1452–1458. doi: 10.1016/0959-8049(92)90542-a. [DOI] [PubMed] [Google Scholar]
  14. Nakagawa Y., Homma S., Yamamoto I., Banno M., Nakazato H., Imanaga H., Yamamoto N. In vivo and in vitro activation of macrophages with a cyanine photosensitizing dye, platonin. Cancer Immunol Immunother. 1993 Aug;37(3):157–162. doi: 10.1007/BF01525429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Parkins C. S., Dennis M. F., Stratford M. R., Hill S. A., Chaplin D. J. Ischemia reperfusion injury in tumors: the role of oxygen radicals and nitric oxide. Cancer Res. 1995 Dec 15;55(24):6026–6029. [PubMed] [Google Scholar]
  16. Pass H. I. Photodynamic therapy in oncology: mechanisms and clinical use. J Natl Cancer Inst. 1993 Mar 17;85(6):443–456. doi: 10.1093/jnci/85.6.443. [DOI] [PubMed] [Google Scholar]
  17. Ris H. B., Altermatt H. J., Inderbitzi R., Hess R., Nachbur B., Stewart J. C., Wang Q., Lim C. K., Bonnett R., Berenbaum M. C. Photodynamic therapy with chlorins for diffuse malignant mesothelioma: initial clinical results. Br J Cancer. 1991 Dec;64(6):1116–1120. doi: 10.1038/bjc.1991.474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sveinbjørnsson B., Olsen R., Seternes O. M., Seljelid R. Macrophage cytotoxicity against murine meth A sarcoma involves nitric oxide-mediated apoptosis. Biochem Biophys Res Commun. 1996 Jun 25;223(3):643–649. doi: 10.1006/bbrc.1996.0948. [DOI] [PubMed] [Google Scholar]
  19. Takahashi K., Takata M., Suwaki T., Kawata N., Tanimoto Y., Soda R., Kimura I. New flow cytometric method for surface phenotyping basophils from peripheral blood. J Immunol Methods. 1993 Jun 4;162(1):17–21. doi: 10.1016/0022-1759(93)90402-s. [DOI] [PubMed] [Google Scholar]
  20. Yamamoto N., Homma S., Sery T. W., Donoso L. A., Hoober J. K. Photodynamic immunopotentiation: in vitro activation of macrophages by treatment of mouse peritoneal cells with haematoporphyrin derivative and light. Eur J Cancer. 1991;27(4):467–471. doi: 10.1016/0277-5379(91)90388-t. [DOI] [PubMed] [Google Scholar]
  21. Yamamoto N., Hoober J. K., Yamamoto N., Yamamoto S. Tumoricidal capacities of macrophages photodynamically activated with hematoporphyrin derivative. Photochem Photobiol. 1992 Aug;56(2):245–250. doi: 10.1111/j.1751-1097.1992.tb02153.x. [DOI] [PubMed] [Google Scholar]
  22. Yamamoto N., Sery T. W., Hoober J. K., Willett N. P., Lindsay D. D. Effectiveness of photofrin II in activation of macrophages and in vitro killing of retinoblastoma cells. Photochem Photobiol. 1994 Aug;60(2):160–164. doi: 10.1111/j.1751-1097.1994.tb05084.x. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES