Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1999 Nov;81(5):800–807. doi: 10.1038/sj.bjc.6690767

Differential expression of topoisomerase I and RAD52 protein in yeast reveals new facets of the mechanism of action of bisdioxopiperazine compounds

B van Hille 1, X Clerc 1, A M Creighton 2, B T Hill 1
PMCID: PMC2374289  PMID: 10555749

Abstract

A screening procedure which permits identification of compounds based on their activities against specific biological targets directly in a living organism, Saccharomyces cerevisiae, has been established as part of our new drug discovery programme. Use of this assay has provided the first direct evidence that TOP1 and RAD52 proteins are involved in the mode of action of bisdioxopiperazine ICRF compounds, which thus express a mode of action quite distinctive from the other known TOP2 inhibitors evaluated. The functional assay is based on a comparison of pairs of yeast differing in their phenotypes by specific traits: the expression or lack of expression of ectopic human DNA topoisomerase I, with or without that of the RAD52 gene. Amongst a series of anticancer agents, inhibitors of topoisomerase I (camptothecin) were identified as such in yeast expressing human topoisomerase I, whilst the presence or absence of RAD52 protein permitted the discrimination of compounds generating double-stranded DNA breaks, either directly (bleomycin) or involving DNA adduct formation (cisplatin), or indirectly with DNA damage mediated via inhibition of the topoisomerase II enzyme (etoposide). Notably, however, both the RAD52 protein and the lack of TOP1 enzyme appeared implicated in the cytotoxic activities of the series of bisdioxopiperazine ICRF compounds tested. This functional assay in a living organism therefore appears to provide a valuable tool for probing distinctive and specific mode(s) of action of diverse anticancer agents. © 1999 Cancer Research Campaign

Keywords: human, yeast, topoisomerase I, RAD52, DNA repair, bisdioxopiperazine

Full Text

The Full Text of this article is available as a PDF (103.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe H., Wada M., Kohno K., Kuwano M. Altered drug sensitivities to anticancer agents in radiation-sensitive DNA repair deficient yeast mutants. Anticancer Res. 1994 Sep-Oct;14(5A):1807–1810. [PubMed] [Google Scholar]
  2. Andoh T., Ishida R. Catalytic inhibitors of DNA topoisomerase II. Biochim Biophys Acta. 1998 Oct 1;1400(1-3):155–171. doi: 10.1016/s0167-4781(98)00133-x. [DOI] [PubMed] [Google Scholar]
  3. Bennett C. B., Snipe J. R., Resnick M. A. A persistent double-strand break destabilizes human DNA in yeast and can lead to G2 arrest and lethality. Cancer Res. 1997 May 15;57(10):1970–1980. [PubMed] [Google Scholar]
  4. Bjornsti M. A., Benedetti P., Viglianti G. A., Wang J. C. Expression of human DNA topoisomerase I in yeast cells lacking yeast DNA topoisomerase I: restoration of sensitivity of the cells to the antitumor drug camptothecin. Cancer Res. 1989 Nov 15;49(22):6318–6323. [PubMed] [Google Scholar]
  5. Chaney S. G., Sancar A. DNA repair: enzymatic mechanisms and relevance to drug response. J Natl Cancer Inst. 1996 Oct 2;88(19):1346–1360. doi: 10.1093/jnci/88.19.1346. [DOI] [PubMed] [Google Scholar]
  6. Chen A. Y., Liu L. F. DNA topoisomerases: essential enzymes and lethal targets. Annu Rev Pharmacol Toxicol. 1994;34:191–218. doi: 10.1146/annurev.pa.34.040194.001203. [DOI] [PubMed] [Google Scholar]
  7. Corbett A. H., Osheroff N. When good enzymes go bad: conversion of topoisomerase II to a cellular toxin by antineoplastic drugs. Chem Res Toxicol. 1993 Sep-Oct;6(5):585–597. doi: 10.1021/tx00035a001. [DOI] [PubMed] [Google Scholar]
  8. Eng W. K., Faucette L., Johnson R. K., Sternglanz R. Evidence that DNA topoisomerase I is necessary for the cytotoxic effects of camptothecin. Mol Pharmacol. 1988 Dec;34(6):755–760. [PubMed] [Google Scholar]
  9. Hasinoff B. B., Kuschak T. I., Yalowich J. C., Creighton A. M. A QSAR study comparing the cytotoxicity and DNA topoisomerase II inhibitory effects of bisdioxopiperazine analogs of ICRF-187 (dexrazoxane). Biochem Pharmacol. 1995 Sep 28;50(7):953–958. doi: 10.1016/0006-2952(95)00218-o. [DOI] [PubMed] [Google Scholar]
  10. Hasinoff B. B., Reinders F. X., Clark V. The enzymatic hydrolysis-activation of the adriamycin cardioprotective agent (+)-1,2-bis(3,5-dioxopiperazinyl-1-yl)propane. Drug Metab Dispos. 1991 Jan-Feb;19(1):74–80. [PubMed] [Google Scholar]
  11. Hays S. L., Firmenich A. A., Berg P. Complex formation in yeast double-strand break repair: participation of Rad51, Rad52, Rad55, and Rad57 proteins. Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):6925–6929. doi: 10.1073/pnas.92.15.6925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ishida R., Hamatake M., Wasserman R. A., Nitiss J. L., Wang J. C., Andoh T. DNA topoisomerase II is the molecular target of bisdioxopiperazine derivatives ICRF-159 and ICRF-193 in Saccharomyces cerevisiae. Cancer Res. 1995 Jun 1;55(11):2299–2303. [PubMed] [Google Scholar]
  13. Johnson S. A., Harper P., Hortobagyi G. N., Pouillart P. Vinorelbine: an overview. Cancer Treat Rev. 1996 Mar;22(2):127–142. doi: 10.1016/s0305-7372(96)90032-8. [DOI] [PubMed] [Google Scholar]
  14. Kingsbury W. D., Boehm J. C., Jakas D. R., Holden K. G., Hecht S. M., Gallagher G., Caranfa M. J., McCabe F. L., Faucette L. F., Johnson R. K. Synthesis of water-soluble (aminoalkyl)camptothecin analogues: inhibition of topoisomerase I and antitumor activity. J Med Chem. 1991 Jan;34(1):98–107. doi: 10.1021/jm00105a017. [DOI] [PubMed] [Google Scholar]
  15. Milne G. T., Weaver D. T. Dominant negative alleles of RAD52 reveal a DNA repair/recombination complex including Rad51 and Rad52. Genes Dev. 1993 Sep;7(9):1755–1765. doi: 10.1101/gad.7.9.1755. [DOI] [PubMed] [Google Scholar]
  16. Nitiss J., Wang J. C. DNA topoisomerase-targeting antitumor drugs can be studied in yeast. Proc Natl Acad Sci U S A. 1988 Oct;85(20):7501–7505. doi: 10.1073/pnas.85.20.7501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Osheroff N. Biochemical basis for the interactions of type I and type II topoisomerases with DNA. Pharmacol Ther. 1989;41(1-2):223–241. doi: 10.1016/0163-7258(89)90108-3. [DOI] [PubMed] [Google Scholar]
  18. Pommier Y., Tanizawa A., Kohn K. W. Mechanisms of topoisomerase I inhibition by anticancer drugs. Adv Pharmacol. 1994;29B:73–92. doi: 10.1016/s1054-3589(08)61132-1. [DOI] [PubMed] [Google Scholar]
  19. Ramotar D., Masson J. Y. Saccharomyces cerevisiae DNA repair processes: an update. Mol Cell Biochem. 1996 May 10;158(1):65–75. doi: 10.1007/BF00225884. [DOI] [PubMed] [Google Scholar]
  20. Roca J., Ishida R., Berger J. M., Andoh T., Wang J. C. Antitumor bisdioxopiperazines inhibit yeast DNA topoisomerase II by trapping the enzyme in the form of a closed protein clamp. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1781–1785. doi: 10.1073/pnas.91.5.1781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sehested M., Jensen P. B. Mapping of DNA topoisomerase II poisons (etoposide, clerocidin) and catalytic inhibitors (aclarubicin, ICRF-187) to four distinct steps in the topoisomerase II catalytic cycle. Biochem Pharmacol. 1996 Apr 12;51(7):879–886. doi: 10.1016/0006-2952(95)02241-4. [DOI] [PubMed] [Google Scholar]
  22. Sehested M., Jensen P. B., Sørensen B. S., Holm B., Friche E., Demant E. J. Antagonistic effect of the cardioprotector (+)-1,2-bis(3,5-dioxopiperazinyl-1-yl)propane (ICRF-187) on DNA breaks and cytotoxicity induced by the topoisomerase II directed drugs daunorubicin and etoposide (VP-16). Biochem Pharmacol. 1993 Aug 3;46(3):389–393. doi: 10.1016/0006-2952(93)90514-w. [DOI] [PubMed] [Google Scholar]
  23. Shen D. W., Akiyama S., Schoenlein P., Pastan I., Gottesman M. M. Characterisation of high-level cisplatin-resistant cell lines established from a human hepatoma cell line and human KB adenocarcinoma cells: cross-resistance and protein changes. Br J Cancer. 1995 Apr;71(4):676–683. doi: 10.1038/bjc.1995.134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Subramanian D., Rosenstein B. S., Muller M. T. Ultraviolet-induced DNA damage stimulates topoisomerase I-DNA complex formation in vivo: possible relationship with DNA repair. Cancer Res. 1998 Mar 1;58(5):976–984. [PubMed] [Google Scholar]
  25. Thielmann H. W., Popanda O., Gersbach H., Gilberg F. Various inhibitors of DNA topoisomerases diminish repair-specific DNA incision in UV-irradiated human fibroblasts. Carcinogenesis. 1993 Nov;14(11):2341–2351. doi: 10.1093/carcin/14.11.2341. [DOI] [PubMed] [Google Scholar]
  26. Utsugi T., Shibata J., Sugimoto Y., Aoyagi K., Wierzba K., Kobunai T., Terada T., Oh-hara T., Tsuruo T., Yamada Y. Antitumor activity of a novel podophyllotoxin derivative (TOP-53) against lung cancer and lung metastatic cancer. Cancer Res. 1996 Jun 15;56(12):2809–2814. [PubMed] [Google Scholar]
  27. Wang J. C. DNA topoisomerases. Annu Rev Biochem. 1985;54:665–697. doi: 10.1146/annurev.bi.54.070185.003313. [DOI] [PubMed] [Google Scholar]
  28. Wood R. D. DNA repair in eukaryotes. Annu Rev Biochem. 1996;65:135–167. doi: 10.1146/annurev.bi.65.070196.001031. [DOI] [PubMed] [Google Scholar]
  29. van Hille B., Hill B. T. Yeast cells expressing differential levels of human or yeast DNA topoisomerase II: a potent tool for identification and characterization of topoisomerase II-targeting antitumour agents. Cancer Chemother Pharmacol. 1998;42(5):345–356. doi: 10.1007/s002800050828. [DOI] [PubMed] [Google Scholar]
  30. van Rosmalen A., Cullinane C., Cutts S. M., Phillips D. R. Stability of adriamycin-induced DNA adducts and interstrand crosslinks. Nucleic Acids Res. 1995 Jan 11;23(1):42–50. doi: 10.1093/nar/23.1.42. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES