Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1999 Dec;81(7):1142–1149. doi: 10.1038/sj.bjc.6690821

Breast tumour cell-induced down-regulation of type I collagen mRNA in fibroblasts

G Fenhalls 1, M Geyp 1, D M Dent 2, M I Parker 1
PMCID: PMC2374322  PMID: 10584874

Abstract

This study investigated the modulation of type I collagen gene expression in normal fibroblasts by breast tumour cells. Northern analysis of total RNA extracted from stages I, II and III breast tumour tissue revealed that collagen mRNA levels were elevated in stage I tumours compared to the adjacent normal breast tissues, whereas they were decreased in stages II and III breast tumours. This aberrant collagen gene expression was confirmed by non-radioactive RNA:RNA in situ hybridization analysis of 30 breast carcinomas which localized the production of type I collagen mRNA to the stromal fibroblasts within the vicinity of the tumour cells. In order to determine whether the tumour cells were directly responsible for this altered collagen production by the adjacent fibroblasts, breast tumour cell lines were co-cultured with normal fibroblasts for in vitro assessment of collagen and steady-state collagen RNA levels. Co-culture of tumour cells and normal fibroblasts in the same dish resulted in down-regulation of collagen mRNA and protein. Treatment of the fibroblasts with tumour-cell conditioned medium also resulted in decreased collagen protein levels but the mRNA levels, however, remained unaltered. These results suggested that the tumour cells either secrete a labile ‘factor’, or express a cell surface protein requiring direct contact with the fibroblasts, resulting in down-regulation of collagen gene expression. Modulation of the ECM is a common characteristic of invading tumour cells and usually involves increased production of collagenases by the tumour cells or stromal fibroblasts. This study showed that tumour cells were also able to modulate collagen mRNA production by stromal fibroblasts, which may facilitate tumour cell invasion and metastasis. © 1999 Cancer Research Campaign

Keywords: breast cancer, extracellular matrix, cell–cell interaction, collagen gene expression

Full Text

The Full Text of this article is available as a PDF (289.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Al-Adnani M. S., Kirrane J. A., McGee J. O. Inappropriate production of collagen and prolyl hydroxylase by human breast cancer cells in vivo. Br J Cancer. 1975 Jun;31(6):653–660. doi: 10.1038/bjc.1975.112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Armendariz-Borunda J., Katayama K., Seyer J. M. Transcriptional mechanisms of type I collagen gene expression are differentially regulated by interleukin-1 beta, tumor necrosis factor alpha, and transforming growth factor beta in Ito cells. J Biol Chem. 1992 Jul 15;267(20):14316–14321. [PubMed] [Google Scholar]
  3. Barsky S. H., Gopalakrishna R. Increased invasion and spontaneous metastasis of BL6 melanoma with inhibition of the desmoplastic response in C57 BL/6 mice. Cancer Res. 1987 Mar 15;47(6):1663–1667. [PubMed] [Google Scholar]
  4. Barsky S. H., Rao C. N., Grotendorst G. R., Liotta L. A. Increased content of Type V Collagen in desmoplasia of human breast carcinoma. Am J Pathol. 1982 Sep;108(3):276–283. [PMC free article] [PubMed] [Google Scholar]
  5. Basset P., Bellocq J. P., Wolf C., Stoll I., Hutin P., Limacher J. M., Podhajcer O. L., Chenard M. P., Rio M. C., Chambon P. A novel metalloproteinase gene specifically expressed in stromal cells of breast carcinomas. Nature. 1990 Dec 20;348(6303):699–704. doi: 10.1038/348699a0. [DOI] [PubMed] [Google Scholar]
  6. Biswas C. Collagenase stimulation in cocultures of human fibroblasts and human tumor cells. Cancer Lett. 1984 Sep;24(2):201–207. doi: 10.1016/0304-3835(84)90137-x. [DOI] [PubMed] [Google Scholar]
  7. Biswas C. Tumor cell stimulation of collagenase production by fibroblasts. Biochem Biophys Res Commun. 1982 Dec 15;109(3):1026–1034. doi: 10.1016/0006-291x(82)92042-3. [DOI] [PubMed] [Google Scholar]
  8. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  9. Chu M. L., Myers J. C., Bernard M. P., Ding J. F., Ramirez F. Cloning and characterization of five overlapping cDNAs specific for the human pro alpha 1(I) collagen chain. Nucleic Acids Res. 1982 Oct 11;10(19):5925–5934. doi: 10.1093/nar/10.19.5925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Harris J. R., Lippman M. E., Veronesi U., Willett W. Breast cancer (3). N Engl J Med. 1992 Aug 13;327(7):473–480. doi: 10.1056/NEJM199208133270706. [DOI] [PubMed] [Google Scholar]
  11. Hewitt R. E., Powe D. G., Carter G. I., Turner D. R. Desmoplasia and its relevance to colorectal tumour invasion. Int J Cancer. 1993 Jan 2;53(1):62–69. doi: 10.1002/ijc.2910530113. [DOI] [PubMed] [Google Scholar]
  12. Hoefakker S., Boersma W. J., Claassen E. Detection of human cytokines in situ using antibody and probe based methods. J Immunol Methods. 1995 Sep 25;185(2):149–175. doi: 10.1016/0022-1759(95)00122-q. [DOI] [PubMed] [Google Scholar]
  13. Kauppila S., Stenbäck F., Risteli J., Jukkola A., Risteli L. Aberrant type I and type III collagen gene expression in human breast cancer in vivo. J Pathol. 1998 Nov;186(3):262–268. doi: 10.1002/(SICI)1096-9896(1998110)186:3<262::AID-PATH191>3.0.CO;2-3. [DOI] [PubMed] [Google Scholar]
  14. Liotta L. A., Rao C. N., Barsky S. H. Tumor invasion and the extracellular matrix. Lab Invest. 1983 Dec;49(6):636–649. [PubMed] [Google Scholar]
  15. Myers J. C., Chu M. L., Faro S. H., Clark W. J., Prockop D. J., Ramirez F. Cloning a cDNA for the pro-alpha 2 chain of human type I collagen. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3516–3520. doi: 10.1073/pnas.78.6.3516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nakanishi H., Oguri K., Takenaga K., Hosoda S., Okayama M. Differential fibrotic stromal responses of host tissue to low- and high-metastatic cloned Lewis lung carcinoma cells. Lab Invest. 1994 Mar;70(3):324–332. [PubMed] [Google Scholar]
  17. Niitsu Y., Ito N., Kohda K., Owada M., Morita K., Sato S., Watanabe N., Kohgo Y., Urushizaki I. Immunohistochemical identification of type I procollagen in tumour cells of scirrhous adenocarcinoma of the stomach. Br J Cancer. 1988 Jan;57(1):79–82. doi: 10.1038/bjc.1988.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Noel A., Munaut C., Boulvain A., Calberg-Bacq C. M., Lambert C. A., Nusgens B., Lapiere C. M., Foidart J. M. Modulation of collagen and fibronectin synthesis in fibroblasts by normal and malignant cells. J Cell Biochem. 1992 Feb;48(2):150–161. doi: 10.1002/jcb.240480207. [DOI] [PubMed] [Google Scholar]
  19. Ohtani H., Kuroiwa A., Obinata M., Ooshima A., Nagura H. Identification of type I collagen-producing cells in human gastrointestinal carcinomas by non-radioactive in situ hybridization and immunoelectron microscopy. J Histochem Cytochem. 1992 Aug;40(8):1139–1146. doi: 10.1177/40.8.1619278. [DOI] [PubMed] [Google Scholar]
  20. Pauli B. U., Schwartz D. E., Thonar E. J., Kuettner K. E. Tumor invasion and host extracellular matrix. Cancer Metastasis Rev. 1983;2(2):129–152. doi: 10.1007/BF00048966. [DOI] [PubMed] [Google Scholar]
  21. Peterkofsky B., Diegelmann R. Use of a mixture of proteinase-free collagenases for the specific assay of radioactive collagen in the presence of other proteins. Biochemistry. 1971 Mar 16;10(6):988–994. doi: 10.1021/bi00782a009. [DOI] [PubMed] [Google Scholar]
  22. Pucci Minafra I., Minafra S., Tomasino R. M., Sciarrino S., Tinervia R. Collagen changes in the ductal infiltrating (scirrhous) carcinoma of the human breast. A possible role played by type I trimer collagen on the invasive growth. J Submicrosc Cytol. 1986 Oct;18(4):795–805. [PubMed] [Google Scholar]
  23. Roesel R. A., Cutroneo K. R., Scott D. F., Howard E. F. Collagen synthesis by cloned mouse mammary tumor cells. Cancer Res. 1978 Oct;38(10):3269–3275. [PubMed] [Google Scholar]
  24. Sakakibara K., Suzuki T., Motoyama T., Watanabe H., Nagai Y. Biosynthesis of an interstitial type of collagen by cloned human gastric carcinoma cells. Cancer Res. 1982 May;42(5):2019–2027. [PubMed] [Google Scholar]
  25. Smith D. R., Kunkel S. L., Burdick M. D., Wilke C. A., Orringer M. B., Whyte R. I., Strieter R. M. Production of interleukin-10 by human bronchogenic carcinoma. Am J Pathol. 1994 Jul;145(1):18–25. [PMC free article] [PubMed] [Google Scholar]
  26. van den Hooff A. Stromal involvement in malignant growth. Adv Cancer Res. 1988;50:159–196. doi: 10.1016/s0065-230x(08)60437-6. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES