Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1999 Dec;81(7):1155–1161. doi: 10.1038/sj.bjc.6690823

Specific binding of TES-23 antibody to tumour vascular endothelium in mice, rats and human cancer tissue: a novel drug carrier for cancer targeting therapy

S Tsunoda 1, I Ohizumi 2, J Matsui 1, K Koizumi 1, Y Wakai 1, H Makimoto 1, Y Tsutsumi 1, N Utoguchi 3, K Taniguchi 2, H Saito 2, N Harada 2, Y Ohsugi 2, T Mayumi 1
PMCID: PMC2374324  PMID: 10584876

Abstract

The tissue distribution of anti-tumour vascular endothelium monoclonal antibody (TES-23) produced by immunizing with plasma membrane vesicles from isolated rat tumour-derived endothelial cells (TECs) was assessed in various tumour-bearing animals. Radiolabelled TES-23 dramatically accumulated in KMT-17 fibrosarcoma, the source of isolated TECs after intravenous injection. In Meth-A fibrosarcoma, Colon-26 adenocarcinoma in BALB/c mice and HT-1080 human tumour tissue in nude mice, radioactivities of 125I-labelled TES-23 were also up to 50 times higher than those of control antibody with little distribution to normal tissues. The selective recognition of TES-23 to TECs was competitively blocked by preadministration of unlabelled TES-23 in vivo. Furthermore, immunostaining of human tissue sections showed specific binding of TES-23 on endothelium in oesophagus cancers. These results indicate that tumour vascular endothelial cells express common antigen in different tumour types of various animal species. In order to clarify the efficacy of TES-23 as a drug carrier, an immunoconjugate, composed of TES-23 and neocarzinostatin, was tested for its anti-tumour effect in rats bearing KMT-17 fibrosarcomas. The immunoconjugate (TES-23-NCS) caused marked regression of the tumour, accompanied by haemorrhagic necrosis. Thus, from a clinical view, TES-23 would be a novel drug carrier because of its high specificity to tumour vascular endothelium and its application to many types of cancer. © 1999 Cancer Research Campaign

Keywords: tumour vascular endothelium, immunoconjugate, targeting therapy, drug delivery system, monoclonal antibody

Full Text

The Full Text of this article is available as a PDF (542.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brooks P. C., Clark R. A., Cheresh D. A. Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science. 1994 Apr 22;264(5158):569–571. doi: 10.1126/science.7512751. [DOI] [PubMed] [Google Scholar]
  2. Brown J. P., Woodbury R. G., Hart C. E., Hellström I., Hellström K. E. Quantitative analysis of melanoma-associated antigen p97 in normal and neoplastic tissues. Proc Natl Acad Sci U S A. 1981 Jan;78(1):539–543. doi: 10.1073/pnas.78.1.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Burrows F. J., Thorpe P. E. Eradication of large solid tumors in mice with an immunotoxin directed against tumor vasculature. Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):8996–9000. doi: 10.1073/pnas.90.19.8996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Camera L., Kinuya S., Pai L. H., Garmestani K., Brechbiel M. W., Gansow O. A., Paik C. H., Pastan I., Carrasquillo J. A. Preclinical evaluation of 111In-labeled B3 monoclonal antibody: biodistribution and imaging studies in nude mice bearing human epidermoid carcinoma xenografts. Cancer Res. 1993 Jun 15;53(12):2834–2839. [PubMed] [Google Scholar]
  5. Dvorak H. F., Nagy J. A., Dvorak A. M. Structure of solid tumors and their vasculature: implications for therapy with monoclonal antibodies. Cancer Cells. 1991 Mar;3(3):77–85. [PubMed] [Google Scholar]
  6. Dvorak H. F., Nagy J. A., Dvorak J. T., Dvorak A. M. Identification and characterization of the blood vessels of solid tumors that are leaky to circulating macromolecules. Am J Pathol. 1988 Oct;133(1):95–109. [PMC free article] [PubMed] [Google Scholar]
  7. Epenetos A. A., Snook D., Durbin H., Johnson P. M., Taylor-Papadimitriou J. Limitations of radiolabeled monoclonal antibodies for localization of human neoplasms. Cancer Res. 1986 Jun;46(6):3183–3191. [PubMed] [Google Scholar]
  8. Friden P. M., Walus L. R., Watson P., Doctrow S. R., Kozarich J. W., Bäckman C., Bergman H., Hoffer B., Bloom F., Granholm A. C. Blood-brain barrier penetration and in vivo activity of an NGF conjugate. Science. 1993 Jan 15;259(5093):373–377. doi: 10.1126/science.8420006. [DOI] [PubMed] [Google Scholar]
  9. Griffioen A. W., Damen C. A., Blijham G. H., Groenewegen G. Tumor angiogenesis is accompanied by a decreased inflammatory response of tumor-associated endothelium. Blood. 1996 Jul 15;88(2):667–673. [PubMed] [Google Scholar]
  10. Griffioen A. W., Damen C. A., Martinotti S., Blijham G. H., Groenewegen G. Endothelial intercellular adhesion molecule-1 expression is suppressed in human malignancies: the role of angiogenic factors. Cancer Res. 1996 Mar 1;56(5):1111–1117. [PubMed] [Google Scholar]
  11. Haranaka K., Satomi N., Sakurai A. Antitumor activity of murine tumor necrosis factor (TNF) against transplanted murine tumors and heterotransplanted human tumors in nude mice. Int J Cancer. 1984 Aug 15;34(2):263–267. doi: 10.1002/ijc.2910340219. [DOI] [PubMed] [Google Scholar]
  12. Heuser L. S., Miller F. N. Differential macromolecular leakage from the vasculature of tumors. Cancer. 1986 Feb 1;57(3):461–464. doi: 10.1002/1097-0142(19860201)57:3<461::aid-cncr2820570310>3.0.co;2-6. [DOI] [PubMed] [Google Scholar]
  13. Juweid M., Neumann R., Paik C., Perez-Bacete M. J., Sato J., van Osdol W., Weinstein J. N. Micropharmacology of monoclonal antibodies in solid tumors: direct experimental evidence for a binding site barrier. Cancer Res. 1992 Oct 1;52(19):5144–5153. [PubMed] [Google Scholar]
  14. Kennel S. J., Falcioni R., Wesley J. W. Microdistribution of specific rat monoclonal antibodies to mouse tissues and human tumor xenografts. Cancer Res. 1991 Mar 1;51(5):1529–1536. [PubMed] [Google Scholar]
  15. Kitamura K., Takahashi T., Kotani T., Miyagaki T., Yamaoka N., Tsurumi H., Noguchi A., Yamaguchi T. Local administration of monoclonal antibody-drug conjugate: a new strategy to reduce the local recurrence of colorectal cancer. Cancer Res. 1992 Nov 15;52(22):6323–6328. [PubMed] [Google Scholar]
  16. Laborda J., Douillard J. Y., Burg C., Lizzio E. F., Ridge J., Levenbook I., Hoffman T. Pharmacokinetic studies of mouse monoclonal antibodies to a rat colon carcinoma: I. Comparison of biodistribution in normal rats, syngeneic tumor-bearing rats, or tumor-bearing nude mice. J Nucl Med. 1990 Jun;31(6):1028–1034. [PubMed] [Google Scholar]
  17. Madri J. A., Williams S. K. Capillary endothelial cell cultures: phenotypic modulation by matrix components. J Cell Biol. 1983 Jul;97(1):153–165. doi: 10.1083/jcb.97.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Manda T., Shimomura K., Mukumoto S., Kobayashi K., Mizota T., Hirai O., Matsumoto S., Oku T., Nishigaki F., Mori J. Recombinant human tumor necrosis factor-alpha: evidence of an indirect mode of antitumor activity. Cancer Res. 1987 Jul 15;47(14):3707–3711. [PubMed] [Google Scholar]
  19. Melder R. J., Koenig G. C., Witwer B. P., Safabakhsh N., Munn L. L., Jain R. K. During angiogenesis, vascular endothelial growth factor and basic fibroblast growth factor regulate natural killer cell adhesion to tumor endothelium. Nat Med. 1996 Sep;2(9):992–997. doi: 10.1038/nm0996-992. [DOI] [PubMed] [Google Scholar]
  20. Modzelewski R. A., Davies P., Watkins S. C., Auerbach R., Chang M. J., Johnson C. S. Isolation and identification of fresh tumor-derived endothelial cells from a murine RIF-1 fibrosarcoma. Cancer Res. 1994 Jan 15;54(2):336–339. [PubMed] [Google Scholar]
  21. Nose K., Saito H., Kuroki T. Isolation of a gene sequence induced later by tumor-promoting 12-O-tetradecanoylphorbol-13-acetate in mouse osteoblastic cells (MC3T3-E1) and expressed constitutively in ras-transformed cells. Cell Growth Differ. 1990 Nov;1(11):511–518. [PubMed] [Google Scholar]
  22. Ohizumi I., Tsunoda S., Taniguchi K., Saito H., Esaki K., Koizumi K., Makimoto H., Wakai Y., Matsui J., Tsutsumi Y. Identification of tumor vascular antigens by monoclonal antibodies prepared from rat-tumor-derived endothelial cells. Int J Cancer. 1998 Aug 12;77(4):561–566. doi: 10.1002/(sici)1097-0215(19980812)77:4<561::aid-ijc15>3.0.co;2-9. [DOI] [PubMed] [Google Scholar]
  23. Ohizumi I., Tsunoda S., Taniguchi K., Saito H., Esaki K., Makimoto H., Wakai Y., Tsutsumi Y., Nakagawa S., Utoguchi N. Antibody-based therapy targeting tumor vascular endothelial cells suppresses solid tumor growth in rats. Biochem Biophys Res Commun. 1997 Jul 18;236(2):493–496. doi: 10.1006/bbrc.1997.6989. [DOI] [PubMed] [Google Scholar]
  24. Pai L. H., Wittes R., Setser A., Willingham M. C., Pastan I. Treatment of advanced solid tumors with immunotoxin LMB-1: an antibody linked to Pseudomonas exotoxin. Nat Med. 1996 Mar;2(3):350–353. doi: 10.1038/nm0396-350. [DOI] [PubMed] [Google Scholar]
  25. Reiter Y., Pai L. H., Brinkmann U., Wang Q. C., Pastan I. Antitumor activity and pharmacokinetics in mice of a recombinant immunotoxin containing a disulfide-stabilized Fv fragment. Cancer Res. 1994 May 15;54(10):2714–2718. [PubMed] [Google Scholar]
  26. Rettig W. J., Garin-Chesa P., Healey J. H., Su S. L., Jaffe E. A., Old L. J. Identification of endosialin, a cell surface glycoprotein of vascular endothelial cells in human cancer. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10832–10836. doi: 10.1073/pnas.89.22.10832. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Scott R. E. Plasma membrane vesiculation: a new technique for isolation of plasma membranes. Science. 1976 Nov 12;194(4266):743–745. doi: 10.1126/science.982044. [DOI] [PubMed] [Google Scholar]
  28. Takahashi T., Yamaguchi T., Kitamura K., Noguchi A., Honda M., Otsuji E. [Missile therapy of colorectal and pancreatic cancers--clinical trial of monoclonal antibody, A7-NCS, in 73 patients with colorectal and pancreatic cancers]. Gan To Kagaku Ryoho. 1990 Jun;17(6):1111–1119. [PubMed] [Google Scholar]
  29. Thorpe P. E., Burrows F. J. Antibody-directed targeting of the vasculature of solid tumors. Breast Cancer Res Treat. 1995;36(2):237–251. doi: 10.1007/BF00666044. [DOI] [PubMed] [Google Scholar]
  30. Utoguchi N., Dantakean A., Makimoto H., Wakai Y., Tsutsumi Y., Nakagawa S., Mayumi T. Isolation and properties of tumor-derived endothelial cells from rat KMT-17 fibrosarcoma. Jpn J Cancer Res. 1995 Feb;86(2):193–201. doi: 10.1111/j.1349-7006.1995.tb03039.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Utoguchi N., Mizuguchi H., Dantakean A., Makimoto H., Wakai Y., Tsutsumi Y., Nakagawa S., Mayumi T. Effect of tumour cell-conditioned medium on endothelial macromolecular permeability and its correlation with collagen. Br J Cancer. 1996 Jan;73(1):24–28. doi: 10.1038/bjc.1996.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Utoguchi N., Mizuguchi H., Saeki K., Ikeda K., Tsutsumi Y., Nakagawa S., Mayumi T. Tumor-conditioned medium increases macromolecular permeability of endothelial cell monolayer. Cancer Lett. 1995 Feb 10;89(1):7–14. doi: 10.1016/0304-3835(95)90151-5. [DOI] [PubMed] [Google Scholar]
  33. Watanabe N., Niitsu Y., Umeno H., Sone H., Neda H., Yamauchi N., Maeda M., Urushizaki I. Synergistic cytotoxic and antitumor effects of recombinant human tumor necrosis factor and hyperthermia. Cancer Res. 1988 Feb 1;48(3):650–653. [PubMed] [Google Scholar]
  34. Wu N. Z., Klitzman B., Dodge R., Dewhirst M. W. Diminished leukocyte-endothelium interaction in tumor microvessels. Cancer Res. 1992 Aug 1;52(15):4265–4268. [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES