Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1999 Sep;81(1):43–53. doi: 10.1038/sj.bjc.6690649

HGF/SF and its receptor c-MET play a minor role in the dissemination of human B-lymphoma cells in SCID mice

I S Weimar 1, K Weijer 1, P C M van den Berk 1, E J Muller 1, N Miranda 1,2, A Q Bakker 1, M H M Heemskerk 1, A Hekman 1, G C de Gast 1,3, W R Gerritsen 1,3
PMCID: PMC2374344  PMID: 10487611

Abstract

The MET protooncogene, c-MET, encodes a cell surface tyrosine kinase receptor. The ligand for c-MET is hepatocyte growth factor (HGF), also known as scatter factor (SF), which is known to affect proliferation and motility of primarily epithelial cells. Recently, HGF/SF was also shown to affect haemopoiesis. Studies with epithelial and transfected NIH3T3 cells indicated that the HGF/SF–c-MET interaction promotes invasion in vitro and in vivo. We previously demonstrated that HGF/SF induces adhesion of c-MET-positive B-lymphoma cells to extracellular matrix molecules, and promoted migration and invasion in in vitro assays. Here, the effect of HGF/SF on tumorigenicity of c-MET-positive and c-MET-negative human B-lymphoma cell lines was studied in C.B-17 scid/scid (severe combined immune deficient) mice. Intravenously (i.v.) injected c-MET-positive (BJAB) as well as c-MET-negative (Daudi and Ramos cells) B-lymphoma cells formed tumours in SCID mice. The B-lymphoma cells invaded different organs, such as liver, kidney, lymph nodes, lung, gonads and the central nervous system. We assessed the effect of human HGF/SF on the dissemination of the B-lymphoma cells and found that administration of 5 μg HGF/SF to mice, injected (i.v.) with c-MET-positive lymphoma cells, significantly (P = 0.018) increased the number of metastases in lung, liver and lymph nodes. In addition, HGF/SF did not significantly influence dissemination of c-MET-negative lymphoma cells (P = 0.350 with Daudi cells and P = 0.353 with Ramos cells). Thus the effect of administration of HGF/SF on invasion of lymphoma cells is not an indirect one, e.g. via an effect on endothelial cells. Finally, we investigated the effect of HGF/SF on dissemination of c-MET-transduced Ramos cells. In response to HGF/SF, c-MET-transduced Ramos cells showed an increased migration through Matrigel in Boyden chambers compared to wild-type and control-transduced Ramos cells. The dissemination pattern of c-MET-transduced cells did not differ from control cells in in vivo experiments using SCID mice. Also no effect of HGF/SF administration could be documented, in contrast to the in vitro experiments. From our experiments can be concluded that the HGF/SF–c-MET interaction only plays a minor role in the dissemination of human B-lymphoma cells. © 1999 Cancer Research Campaign

Keywords: HGF/SF, c-MET, retroviral transduction, human B-lymphoma cells, dissemination, SCID mice

Full Text

The Full Text of this article is available as a PDF (227.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams D. H., Harvath L., Bottaro D. P., Interrante R., Catalano G., Tanaka Y., Strain A., Hubscher S. G., Shaw S. Hepatocyte growth factor and macrophage inflammatory protein 1 beta: structurally distinct cytokines that induce rapid cytoskeletal changes and subset-preferential migration in T cells. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):7144–7148. doi: 10.1073/pnas.91.15.7144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adams D. H., Lloyd A. R. Chemokines: leucocyte recruitment and activation cytokines. Lancet. 1997 Feb 15;349(9050):490–495. doi: 10.1016/s0140-6736(96)07524-1. [DOI] [PubMed] [Google Scholar]
  3. Albini A., Iwamoto Y., Kleinman H. K., Martin G. R., Aaronson S. A., Kozlowski J. M., McEwan R. N. A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res. 1987 Jun 15;47(12):3239–3245. [PubMed] [Google Scholar]
  4. Appasamy R., Tanabe M., Murase N., Zarnegar R., Venkataramanan R., Van Thiel D. H., Michalopoulos G. K. Hepatocyte growth factor, blood clearance, organ uptake, and biliary excretion in normal and partially hepatectomized rats. Lab Invest. 1993 Mar;68(3):270–276. [PubMed] [Google Scholar]
  5. Bellusci S., Moens G., Gaudino G., Comoglio P., Nakamura T., Thiery J. P., Jouanneau J. Creation of an hepatocyte growth factor/scatter factor autocrine loop in carcinoma cells induces invasive properties associated with increased tumorigenicity. Oncogene. 1994 Apr;9(4):1091–1099. [PubMed] [Google Scholar]
  6. Berman M. E., Xie Y., Muller W. A. Roles of platelet/endothelial cell adhesion molecule-1 (PECAM-1, CD31) in natural killer cell transendothelial migration and beta 2 integrin activation. J Immunol. 1996 Feb 15;156(4):1515–1524. [PubMed] [Google Scholar]
  7. Bussolino F., Di Renzo M. F., Ziche M., Bocchietto E., Olivero M., Naldini L., Gaudino G., Tamagnone L., Coffer A., Comoglio P. M. Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth. J Cell Biol. 1992 Nov;119(3):629–641. doi: 10.1083/jcb.119.3.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Carlos T. M., Harlan J. M. Leukocyte-endothelial adhesion molecules. Blood. 1994 Oct 1;84(7):2068–2101. [PubMed] [Google Scholar]
  9. Cesano A., O'Connor R., Lange B., Finan J., Rovera G., Santoli D. Homing and progression patterns of childhood acute lymphoblastic leukemias in severe combined immunodeficiency mice. Blood. 1991 Jun 1;77(11):2463–2474. [PubMed] [Google Scholar]
  10. Cooper C. S., Tempest P. R., Beckman M. P., Heldin C. H., Brookes P. Amplification and overexpression of the met gene in spontaneously transformed NIH3T3 mouse fibroblasts. EMBO J. 1986 Oct;5(10):2623–2628. doi: 10.1002/j.1460-2075.1986.tb04543.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. DeGrendele H. C., Estess P., Picker L. J., Siegelman M. H. CD44 and its ligand hyaluronate mediate rolling under physiologic flow: a novel lymphocyte-endothelial cell primary adhesion pathway. J Exp Med. 1996 Mar 1;183(3):1119–1130. doi: 10.1084/jem.183.3.1119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Di Renzo M. F., Olivero M., Ferro S., Prat M., Bongarzone I., Pilotti S., Belfiore A., Costantino A., Vigneri R., Pierotti M. A. Overexpression of the c-MET/HGF receptor gene in human thyroid carcinomas. Oncogene. 1992 Dec;7(12):2549–2553. [PubMed] [Google Scholar]
  13. Di Renzo M. F., Olivero M., Giacomini A., Porte H., Chastre E., Mirossay L., Nordlinger B., Bretti S., Bottardi S., Giordano S. Overexpression and amplification of the met/HGF receptor gene during the progression of colorectal cancer. Clin Cancer Res. 1995 Feb;1(2):147–154. [PubMed] [Google Scholar]
  14. Dignass A. U., Lynch-Devaney K., Podolsky D. K. Hepatocyte growth factor/scatter factor modulates intestinal epithelial cell proliferation and migration. Biochem Biophys Res Commun. 1994 Jul 29;202(2):701–709. doi: 10.1006/bbrc.1994.1987. [DOI] [PubMed] [Google Scholar]
  15. Ferracini R., Di Renzo M. F., Scotlandi K., Baldini N., Olivero M., Lollini P., Cremona O., Campanacci M., Comoglio P. M. The Met/HGF receptor is over-expressed in human osteosarcomas and is activated by either a paracrine or an autocrine circuit. Oncogene. 1995 Feb 16;10(4):739–749. [PubMed] [Google Scholar]
  16. Galimi F., Bagnara G. P., Bonsi L., Cottone E., Follenzi A., Simeone A., Comoglio P. M. Hepatocyte growth factor induces proliferation and differentiation of multipotent and erythroid hemopoietic progenitors. J Cell Biol. 1994 Dec;127(6 Pt 1):1743–1754. doi: 10.1083/jcb.127.6.1743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gherardi E., Stoker M. Hepatocytes and scatter factor. Nature. 1990 Jul 19;346(6281):228–228. doi: 10.1038/346228b0. [DOI] [PubMed] [Google Scholar]
  18. Giordano S., Di Renzo M. F., Narsimhan R. P., Cooper C. S., Rosa C., Comoglio P. M. Biosynthesis of the protein encoded by the c-met proto-oncogene. Oncogene. 1989 Nov;4(11):1383–1388. [PubMed] [Google Scholar]
  19. Giordano S., Zhen Z., Medico E., Gaudino G., Galimi F., Comoglio P. M. Transfer of motogenic and invasive response to scatter factor/hepatocyte growth factor by transfection of human MET protooncogene. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):649–653. doi: 10.1073/pnas.90.2.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Goff J. P., Shields D. S., Petersen B. E., Zajac V. F., Michalopoulos G. K., Greenberger J. S. Synergistic effects of hepatocyte growth factor on human cord blood CD34+ progenitor cells are the result of c-met receptor expression. Stem Cells. 1996 Sep;14(5):592–602. doi: 10.1002/stem.140592. [DOI] [PubMed] [Google Scholar]
  21. Grant D. S., Kleinman H. K., Goldberg I. D., Bhargava M. M., Nickoloff B. J., Kinsella J. L., Polverini P., Rosen E. M. Scatter factor induces blood vessel formation in vivo. Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):1937–1941. doi: 10.1073/pnas.90.5.1937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Heemskerk M. H., Blom B., Nolan G., Stegmann A. P., Bakker A. Q., Weijer K., Res P. C., Spits H. Inhibition of T cell and promotion of natural killer cell development by the dominant negative helix loop helix factor Id3. J Exp Med. 1997 Nov 3;186(9):1597–1602. doi: 10.1084/jem.186.9.1597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hordijk P. L., ten Klooster J. P., van der Kammen R. A., Michiels F., Oomen L. C., Collard J. G. Inhibition of invasion of epithelial cells by Tiam1-Rac signaling. Science. 1997 Nov 21;278(5342):1464–1466. doi: 10.1126/science.278.5342.1464. [DOI] [PubMed] [Google Scholar]
  24. Jeffers M., Rong S., Anver M., Vande Woude G. F. Autocrine hepatocyte growth factor/scatter factor-Met signaling induces transformation and the invasive/metastastic phenotype in C127 cells. Oncogene. 1996 Aug 15;13(4):853–856. [PubMed] [Google Scholar]
  25. Jeffers M., Rong S., Vande Woude G. F. Hepatocyte growth factor/scatter factor-Met signaling in tumorigenicity and invasion/metastasis. J Mol Med (Berl) 1996 Sep;74(9):505–513. doi: 10.1007/BF00204976. [DOI] [PubMed] [Google Scholar]
  26. Kinsella T. M., Nolan G. P. Episomal vectors rapidly and stably produce high-titer recombinant retrovirus. Hum Gene Ther. 1996 Aug 1;7(12):1405–1413. doi: 10.1089/hum.1996.7.12-1405. [DOI] [PubMed] [Google Scholar]
  27. Lawrence M. B., Springer T. A. Leukocytes roll on a selectin at physiologic flow rates: distinction from and prerequisite for adhesion through integrins. Cell. 1991 May 31;65(5):859–873. doi: 10.1016/0092-8674(91)90393-d. [DOI] [PubMed] [Google Scholar]
  28. Liu C., Park M., Tsao M. S. Overexpression of c-met proto-oncogene but not epidermal growth factor receptor or c-erbB-2 in primary human colorectal carcinomas. Oncogene. 1992 Jan;7(1):181–185. [PubMed] [Google Scholar]
  29. Mann R., Mulligan R. C., Baltimore D. Construction of a retrovirus packaging mutant and its use to produce helper-free defective retrovirus. Cell. 1983 May;33(1):153–159. doi: 10.1016/0092-8674(83)90344-6. [DOI] [PubMed] [Google Scholar]
  30. Matsuda Y., Matsumoto K., Ichida T., Nakamura T. Hepatocyte growth factor suppresses the onset of liver cirrhosis and abrogates lethal hepatic dysfunction in rats. J Biochem. 1995 Sep;118(3):643–649. doi: 10.1093/oxfordjournals.jbchem.a124958. [DOI] [PubMed] [Google Scholar]
  31. Mulé J. J., Jicha D. L., Rosenberg S. A. The use of congenitally immunodeficient mice to study human tumor metastases and immunotherapy. J Immunother (1991) 1992 Oct;12(3):196–198. doi: 10.1097/00002371-199210000-00011. [DOI] [PubMed] [Google Scholar]
  32. Nakamura S., Gohda E., Matsunaga T., Yamamoto I., Minowada J. Production of hepatocyte growth factor by human haematopoietic cell lines. Cytokine. 1994 May;6(3):285–294. doi: 10.1016/1043-4666(94)90025-6. [DOI] [PubMed] [Google Scholar]
  33. Nakamura T., Nishizawa T., Hagiya M., Seki T., Shimonishi M., Sugimura A., Tashiro K., Shimizu S. Molecular cloning and expression of human hepatocyte growth factor. Nature. 1989 Nov 23;342(6248):440–443. doi: 10.1038/342440a0. [DOI] [PubMed] [Google Scholar]
  34. Naldini L., Vigna E., Ferracini R., Longati P., Gandino L., Prat M., Comoglio P. M. The tyrosine kinase encoded by the MET proto-oncogene is activated by autophosphorylation. Mol Cell Biol. 1991 Apr;11(4):1793–1803. doi: 10.1128/mcb.11.4.1793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Naldini L., Vigna E., Narsimhan R. P., Gaudino G., Zarnegar R., Michalopoulos G. K., Comoglio P. M. Hepatocyte growth factor (HGF) stimulates the tyrosine kinase activity of the receptor encoded by the proto-oncogene c-MET. Oncogene. 1991 Apr;6(4):501–504. [PubMed] [Google Scholar]
  36. Natali P. G., Nicotra M. R., Di Renzo M. F., Prat M., Bigotti A., Cavaliere R., Comoglio P. M. Expression of the c-Met/HGF receptor in human melanocytic neoplasms: demonstration of the relationship to malignant melanoma tumour progression. Br J Cancer. 1993 Oct;68(4):746–750. doi: 10.1038/bjc.1993.422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Nishino T., Hisha H., Nishino N., Adachi M., Ikehara S. Hepatocyte growth factor as a hematopoietic regulator. Blood. 1995 Jun 1;85(11):3093–3100. [PubMed] [Google Scholar]
  38. Renz M. E., Chiu H. H., Jones S., Fox J., Kim K. J., Presta L. G., Fong S. Structural requirements for adhesion of soluble recombinant murine vascular cell adhesion molecule-1 to alpha 4 beta 1. J Cell Biol. 1994 Jun;125(6):1395–1406. doi: 10.1083/jcb.125.6.1395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Rong S., Bodescot M., Blair D., Dunn J., Nakamura T., Mizuno K., Park M., Chan A., Aaronson S., Vande Woude G. F. Tumorigenicity of the met proto-oncogene and the gene for hepatocyte growth factor. Mol Cell Biol. 1992 Nov;12(11):5152–5158. doi: 10.1128/mcb.12.11.5152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Rong S., Oskarsson M., Faletto D., Tsarfaty I., Resau J. H., Nakamura T., Rosen E., Hopkins R. F., 3rd, Vande Woude G. F. Tumorigenesis induced by coexpression of human hepatocyte growth factor and the human met protooncogene leads to high levels of expression of the ligand and receptor. Cell Growth Differ. 1993 Jul;4(7):563–569. [PubMed] [Google Scholar]
  41. Rong S., Segal S., Anver M., Resau J. H., Vande Woude G. F. Invasiveness and metastasis of NIH 3T3 cells induced by Met-hepatocyte growth factor/scatter factor autocrine stimulation. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4731–4735. doi: 10.1073/pnas.91.11.4731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Rubin J. S., Bottaro D. P., Aaronson S. A. Hepatocyte growth factor/scatter factor and its receptor, the c-met proto-oncogene product. Biochim Biophys Acta. 1993 Dec 23;1155(3):357–371. doi: 10.1016/0304-419x(93)90015-5. [DOI] [PubMed] [Google Scholar]
  43. Schwarz M. A., Tardelli L., Macosko H. D., Sullivan L. M., Narula S. K., Fine J. S. Interleukin 4 retards dissemination of a human B-cell lymphoma in severe combined immunodeficient mice. Cancer Res. 1995 Sep 1;55(17):3692–3696. [PubMed] [Google Scholar]
  44. Springer T. A. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell. 1994 Jan 28;76(2):301–314. doi: 10.1016/0092-8674(94)90337-9. [DOI] [PubMed] [Google Scholar]
  45. Stoker M., Gherardi E., Perryman M., Gray J. Scatter factor is a fibroblast-derived modulator of epithelial cell mobility. Nature. 1987 May 21;327(6119):239–242. doi: 10.1038/327239a0. [DOI] [PubMed] [Google Scholar]
  46. Strieter R. M., Standiford T. J., Huffnagle G. B., Colletti L. M., Lukacs N. W., Kunkel S. L. "The good, the bad, and the ugly." The role of chemokines in models of human disease. J Immunol. 1996 May 15;156(10):3583–3586. [PubMed] [Google Scholar]
  47. Stroeken P. J., van Rijthoven E. A., van der Valk M. A., Roos E. Targeted disruption of the beta1 integrin gene in a lymphoma cell line greatly reduces metastatic capacity. Cancer Res. 1998 Apr 1;58(7):1569–1577. [PubMed] [Google Scholar]
  48. Tavassoli M., Hardy C. L. Molecular basis of homing of intravenously transplanted stem cells to the marrow. Blood. 1990 Sep 15;76(6):1059–1070. [PubMed] [Google Scholar]
  49. Tsuzuki S., Toyama-Sorimachi N., Kitamura F., Tobita Y., Miyasaka M. FK506 (tacrolimus) inhibits extravasation of lymphoid cells by abrogating VLA-4/VCAM-1 mediated transendothelial migration. FEBS Lett. 1998 Jul 3;430(3):414–418. doi: 10.1016/s0014-5793(98)00703-0. [DOI] [PubMed] [Google Scholar]
  50. Ueno S., Aikou T., Tanabe G., Kobayashi Y., Hamanoue M., Mitsue S., Kawaida K., Nakamura T. Exogenous hepatocyte growth factor markedly stimulates liver regeneration following portal branch ligation in dogs. Cancer Chemother Pharmacol. 1996;38(3):233–237. doi: 10.1007/s002800050476. [DOI] [PubMed] [Google Scholar]
  51. Wakelin M. W., Sanz M. J., Dewar A., Albelda S. M., Larkin S. W., Boughton-Smith N., Williams T. J., Nourshargh S. An anti-platelet-endothelial cell adhesion molecule-1 antibody inhibits leukocyte extravasation from mesenteric microvessels in vivo by blocking the passage through the basement membrane. J Exp Med. 1996 Jul 1;184(1):229–239. doi: 10.1084/jem.184.1.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Walter J., Möller P., Moldenhauer G., Schirrmacher V., Pawlita M., Wolf J. Local growth of a Burkitt's lymphoma versus disseminated invasive growth of the autologous EBV-immortalized lymphoblastoid cells and their somatic cell hybrids in SCID mice. Int J Cancer. 1992 Jan 21;50(2):265–273. doi: 10.1002/ijc.2910500217. [DOI] [PubMed] [Google Scholar]
  53. Yee C. J., DeFrances M. C., Bell A., Bowen W., Petersen B., Michalopoulos G. K., Zarnegar R. Expression and characterization of biologically active human hepatocyte growth factor (HGF) by insect cells infected with HGF-recombinant baculovirus. Biochemistry. 1993 Aug 10;32(31):7922–7931. doi: 10.1021/bi00082a013. [DOI] [PubMed] [Google Scholar]
  54. Zannettino A. C., Berndt M. C., Butcher C., Butcher E. C., Vadas M. A., Simmons P. J. Primitive human hematopoietic progenitors adhere to P-selectin (CD62P). Blood. 1995 Jun 15;85(12):3466–3477. [PubMed] [Google Scholar]
  55. Zarnegar R., Michalopoulos G. K. The many faces of hepatocyte growth factor: from hepatopoiesis to hematopoiesis. J Cell Biol. 1995 Jun;129(5):1177–1180. doi: 10.1083/jcb.129.5.1177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Zarnegar R., Michalopoulos G. Purification and biological characterization of human hepatopoietin A, a polypeptide growth factor for hepatocytes. Cancer Res. 1989 Jun 15;49(12):3314–3320. [PubMed] [Google Scholar]
  57. Zioncheck T. F., Richardson L., DeGuzman G. G., Modi N. B., Hansen S. E., Godowski P. J. The pharmacokinetics, tissue localization, and metabolic processing of recombinant human hepatocyte growth factor after intravenous administration in rats. Endocrinology. 1994 Apr;134(4):1879–1887. doi: 10.1210/endo.134.4.8137756. [DOI] [PubMed] [Google Scholar]
  58. de Kroon J. F., Kluin P. M., Kluin-Nelemans H. C., Willemze R., Falkenburg J. H. Homing and antigenic characterization of a human non-Hodgkin's lymphoma B cell line in severe combined immunodeficient (SCID) mice. Leukemia. 1994 Aug;8(8):1385–1391. [PubMed] [Google Scholar]
  59. van der Voort R., Taher T. E., Keehnen R. M., Smit L., Groenink M., Pals S. T. Paracrine regulation of germinal center B cell adhesion through the c-met-hepatocyte growth factor/scatter factor pathway. J Exp Med. 1997 Jun 16;185(12):2121–2131. doi: 10.1084/jem.185.12.2121. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES