Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1999 Sep;81(1):54–61. doi: 10.1038/sj.bjc.6690650

VEGF and VEGF type C play an important role in angiogenesis and lymphangiogenesis in human malignant mesothelioma tumours

Y Ohta 1,4, V Shridhar 1, R K Bright 1, G P Kalemkerian 1, W Du 2, M Carbone 3, Y Watanabe 4, H I Pass 1
PMCID: PMC2374345  PMID: 10487612

Abstract

The vascular endothelial growth factor (VEGF) family is a novel regulator of endothelial cell proliferation. We assessed the mRNA expression of VEGF, VEGF type C (VEGF-C) and their receptors together with the microvessel density (VD) and microlymphatic vessel density (LVD) in pursuit of their connection and prognostic value in malignant pleural mesothelioma (MPM). We used four human MPM cell lines, 54 MPM tumours and five normal pleural tissues. Expression levels for receptors and ligands were assessed by semiquantitative reverse transcriptase polymerase chain reaction analysis. Microvessels were highlighted by immunohistochemical staining for factor VIII. The discrimination of lymphatics was performed by enzyme-histochemistry for 5′-nucleotidase after adequate inhibition of non-specific activity. The expression levels of VEGF, VEGF-C and VEGFRs were high in all MPM cell lines. The percentages of tumours with higher expression compared to the mean values of normal pleural tissues were 31.5% (17/54) for VEGF, 66.7% (36/54) for VEGF-C, 20.4% (11/54) for fms-like tyrosine kinase (flt)-1, 42.6% (23/54) for kinase insert domain-containing recepter (KDR) and 59.3% (32/54) for flt-4. Significant positive correlations were found between VEGF-C and flt-4, VEGF and KDR, VEGF and flt-1 in tumour tissues. The association between LVD and VEGF-C expression level was especially strong (P < 0.0001, r = 0.63). There were also significant correlations between LVD and flt-4, and VD and VEGF. No correlation, however, was found between LVD and nodal metastasis. VD was a negative prognostic indicator in this study. The associations between VEGF/VEGF-C and vessel density suggest that these factors play an important role in angiogenesis and lymphangiogenesis in this tumour, and assessment of vascularity may be a useful prognostic indicator for MPM patients. © 1999 Cancer Research Campaign

Keywords: vascular endothelial growth factor, VEGF, VEGF-C, angiogenesis, lymphangiogenesis, malignant mesothelioma

Full Text

The Full Text of this article is available as a PDF (436.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Airas L., Niemelä J., Salmi M., Puurunen T., Smith D. J., Jalkanen S. Differential regulation and function of CD73, a glycosyl-phosphatidylinositol-linked 70-kD adhesion molecule, on lymphocytes and endothelial cells. J Cell Biol. 1997 Jan 27;136(2):421–431. doi: 10.1083/jcb.136.2.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Canbolat O., Durak I., Cetin R., Kavutcu M., Demirci S., Oztürk S. Activities of adenosine deaminase, 5'-nucleotidase, guanase, and cytidine deaminase enzymes in cancerous and non-cancerous human breast tissues. Breast Cancer Res Treat. 1996;37(2):189–193. doi: 10.1007/BF01806500. [DOI] [PubMed] [Google Scholar]
  3. Chodak G. W., Haudenschild C., Gittes R. F., Folkman J. Angiogenic activity as a marker of neoplastic and preneoplastic lesions of the human bladder. Ann Surg. 1980 Dec;192(6):762–771. doi: 10.1097/00000658-198012000-00012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Durak I., Bedük Y., Kavutcu M., Süzer O., Yaman O., Oztürk H. S., Canbolat O., Ulutepe S. Activity of the enzymes participating in purine metabolism of cancerous and noncancerous human kidney tissues. Cancer Invest. 1997;15(3):212–216. doi: 10.3109/07357909709039717. [DOI] [PubMed] [Google Scholar]
  5. Grimmond S., Lagercrantz J., Drinkwater C., Silins G., Townson S., Pollock P., Gotley D., Carson E., Rakar S., Nordenskjöld M. Cloning and characterization of a novel human gene related to vascular endothelial growth factor. Genome Res. 1996 Feb;6(2):124–131. doi: 10.1101/gr.6.2.124. [DOI] [PubMed] [Google Scholar]
  6. Hewett P. W., Murray J. C. Coexpression of flt-1, flt-4 and KDR in freshly isolated and cultured human endothelial cells. Biochem Biophys Res Commun. 1996 Apr 25;221(3):697–702. doi: 10.1006/bbrc.1996.0659. [DOI] [PubMed] [Google Scholar]
  7. Jeltsch M., Kaipainen A., Joukov V., Meng X., Lakso M., Rauvala H., Swartz M., Fukumura D., Jain R. K., Alitalo K. Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science. 1997 May 30;276(5317):1423–1425. doi: 10.1126/science.276.5317.1423. [DOI] [PubMed] [Google Scholar]
  8. Joukov V., Pajusola K., Kaipainen A., Chilov D., Lahtinen I., Kukk E., Saksela O., Kalkkinen N., Alitalo K. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J. 1996 Jan 15;15(2):290–298. [PMC free article] [PubMed] [Google Scholar]
  9. Kaipainen A., Korhonen J., Mustonen T., van Hinsbergh V. W., Fang G. H., Dumont D., Breitman M., Alitalo K. Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3566–3570. doi: 10.1073/pnas.92.8.3566. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kukk E., Lymboussaki A., Taira S., Kaipainen A., Jeltsch M., Joukov V., Alitalo K. VEGF-C receptor binding and pattern of expression with VEGFR-3 suggests a role in lymphatic vascular development. Development. 1996 Dec;122(12):3829–3837. doi: 10.1242/dev.122.12.3829. [DOI] [PubMed] [Google Scholar]
  11. Kumar-Singh S., Vermeulen P. B., Weyler J., Segers K., Weyn B., Van Daele A., Dirix L. Y., Van Oosterom A. T., Van Marck E. Evaluation of tumour angiogenesis as a prognostic marker in malignant mesothelioma. J Pathol. 1997 Jun;182(2):211–216. doi: 10.1002/(SICI)1096-9896(199706)182:2<211::AID-PATH834>3.0.CO;2-D. [DOI] [PubMed] [Google Scholar]
  12. Lee J., Gray A., Yuan J., Luoh S. M., Avraham H., Wood W. I. Vascular endothelial growth factor-related protein: a ligand and specific activator of the tyrosine kinase receptor Flt4. Proc Natl Acad Sci U S A. 1996 Mar 5;93(5):1988–1992. doi: 10.1073/pnas.93.5.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Macchiarini P., Fontanini G., Hardin M. J., Squartini F., Angeletti C. A. Relation of neovascularisation to metastasis of non-small-cell lung cancer. Lancet. 1992 Jul 18;340(8812):145–146. doi: 10.1016/0140-6736(92)93217-b. [DOI] [PubMed] [Google Scholar]
  14. Meyer M., Clauss M., Lepple-Wienhues A., Waltenberger J., Augustin H. G., Ziche M., Lanz C., Büttner M., Rziha H. J., Dehio C. A novel vascular endothelial growth factor encoded by Orf virus, VEGF-E, mediates angiogenesis via signalling through VEGFR-2 (KDR) but not VEGFR-1 (Flt-1) receptor tyrosine kinases. EMBO J. 1999 Jan 15;18(2):363–374. doi: 10.1093/emboj/18.2.363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mossman B. T., Kamp D. W., Weitzman S. A. Mechanisms of carcinogenesis and clinical features of asbestos-associated cancers. Cancer Invest. 1996;14(5):466–480. doi: 10.3109/07357909609018904. [DOI] [PubMed] [Google Scholar]
  16. Olofsson B., Pajusola K., Kaipainen A., von Euler G., Joukov V., Saksela O., Orpana A., Pettersson R. F., Alitalo K., Eriksson U. Vascular endothelial growth factor B, a novel growth factor for endothelial cells. Proc Natl Acad Sci U S A. 1996 Mar 19;93(6):2576–2581. doi: 10.1073/pnas.93.6.2576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Polten A., Fluharty A. L., Fluharty C. B., Kappler J., von Figura K., Gieselmann V. Molecular basis of different forms of metachromatic leukodystrophy. N Engl J Med. 1991 Jan 3;324(1):18–22. doi: 10.1056/NEJM199101033240104. [DOI] [PubMed] [Google Scholar]
  18. Samoto K., Ikezaki K., Ono M., Shono T., Kohno K., Kuwano M., Fukui M. Expression of vascular endothelial growth factor and its possible relation with neovascularization in human brain tumors. Cancer Res. 1995 Mar 1;55(5):1189–1193. [PubMed] [Google Scholar]
  19. Takahashi Y., Kitadai Y., Bucana C. D., Cleary K. R., Ellis L. M. Expression of vascular endothelial growth factor and its receptor, KDR, correlates with vascularity, metastasis, and proliferation of human colon cancer. Cancer Res. 1995 Sep 15;55(18):3964–3968. [PubMed] [Google Scholar]
  20. Toi M., Hoshina S., Takayanagi T., Tominaga T. Association of vascular endothelial growth factor expression with tumor angiogenesis and with early relapse in primary breast cancer. Jpn J Cancer Res. 1994 Oct;85(10):1045–1049. doi: 10.1111/j.1349-7006.1994.tb02904.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Turner R. R., Beckstead J. H., Warnke R. A., Wood G. S. Endothelial cell phenotypic diversity. In situ demonstration of immunologic and enzymatic heterogeneity that correlates with specific morphologic subtypes. Am J Clin Pathol. 1987 May;87(5):569–575. doi: 10.1093/ajcp/87.5.569. [DOI] [PubMed] [Google Scholar]
  22. Wood G. S., Beckstead J. H., Turner R. R., Hendrickson M. R., Kempson R. L., Warnke R. A. Malignant fibrous histiocytoma tumor cells resemble fibroblasts. Am J Surg Pathol. 1986 May;10(5):323–335. doi: 10.1097/00000478-198605000-00004. [DOI] [PubMed] [Google Scholar]
  23. Yamada Y., Nezu J., Shimane M., Hirata Y. Molecular cloning of a novel vascular endothelial growth factor, VEGF-D. Genomics. 1997 Jun 15;42(3):483–488. doi: 10.1006/geno.1997.4774. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES