Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 2000 Feb;82(4):838–843. doi: 10.1054/bjoc.1999.1009

Abnormalities of the FHIT gene in human oral carcinogenesis

K Tanimoto 1, S Hayashi 2, E Tsuchiya 3, Y Tokuchi 3, Y Kobayashi 3, K Yoshiga 1, T Okui 1, M Kobayashi 1, T Ichikawa 1
PMCID: PMC2374395  PMID: 10732756

Abstract

The abnormalities of the fragile histidine triad (FHIT) gene in tissue samples of oral squamous cell carcinomas (SCCs) along with several leukoplakias and an erythroplakia were examined to determine whether the FHIT gene is actually a frequent target in vivo for alteration during oral carcinogenesis. Abnormal transcripts of the FHIT gene were found in eight of 15 oral SCCs. Although these abnormal transcripts varied widely, deletion patterns incorporating a deletion of exon 5 were the most common. Loss of heterozygosity (LOH) analysis demonstrated that the abnormal FHIT transcripts found in cancer cells were attributable to abnormalities of the FHIT gene. Abnormal FHIT transcripts were also observed in two of seven premalignant lesions. Interestingly, in the case of one patient with a premalignant lesion showing an abnormal FHIT transcript, subsequent oral SCC developed during a 3-year follow-up period. On the other hand, in the two patients from whom both leukoplakia and SCC samples were taken simultaneously, abnormal FHIT transcripts were found only in the SCCs. Although the functional role of FHIT remains to be clarified, these results suggest that the FHIT alteration is actually involved in carcinogenesis of the oral epithelium. © 2000 Cancer Research Campaign

Keywords: FHIT, gene alteration, microdissection, oral SCC, oral leukoplakia

Full Text

The Full Text of this article is available as a PDF (157.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ah-See K. W., Cooke T. G., Pickford I. R., Soutar D., Balmain A. An allelotype of squamous carcinoma of the head and neck using microsatellite markers. Cancer Res. 1994 Apr 1;54(7):1617–1621. [PubMed] [Google Scholar]
  2. Barnes L. D., Garrison P. N., Siprashvili Z., Guranowski A., Robinson A. K., Ingram S. W., Croce C. M., Ohta M., Huebner K. Fhit, a putative tumor suppressor in humans, is a dinucleoside 5',5"'-P1,P3-triphosphate hydrolase. Biochemistry. 1996 Sep 10;35(36):11529–11535. doi: 10.1021/bi961415t. [DOI] [PubMed] [Google Scholar]
  3. Boldog F., Gemmill R. M., West J., Robinson M., Robinson L., Li E., Roche J., Todd S., Waggoner B., Lundstrom R. Chromosome 3p14 homozygous deletions and sequence analysis of FRA3B. Hum Mol Genet. 1997 Feb;6(2):193–203. doi: 10.1093/hmg/6.2.193. [DOI] [PubMed] [Google Scholar]
  4. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  5. Fong K. M., Biesterveld E. J., Virmani A., Wistuba I., Sekido Y., Bader S. A., Ahmadian M., Ong S. T., Rassool F. V., Zimmerman P. V. FHIT and FRA3B 3p14.2 allele loss are common in lung cancer and preneoplastic bronchial lesions and are associated with cancer-related FHIT cDNA splicing aberrations. Cancer Res. 1997 Jun 1;57(11):2256–2267. [PubMed] [Google Scholar]
  6. Gupta S. K., Douglas-Jones A. G., Morgan J. M. Microdissection of stained archival tissue. Mol Pathol. 1997 Aug;50(4):218–220. doi: 10.1136/mp.50.4.218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hayashi S., Tanimoto K., Hajiro-Nakanishi K., Tsuchiya E., Kurosumi M., Higashi Y., Imai K., Suga K., Nakachi K. Abnormal FHIT transcripts in human breast carcinomas: a clinicopathological and epidemiological analysis of 61 Japanese cases. Cancer Res. 1997 May 15;57(10):1981–1985. [PubMed] [Google Scholar]
  8. Hung J., Kishimoto Y., Sugio K., Virmani A., McIntire D. D., Minna J. D., Gazdar A. F. Allele-specific chromosome 3p deletions occur at an early stage in the pathogenesis of lung carcinoma. JAMA. 1995 Jun 28;273(24):1908–1908. doi: 10.1001/jama.1995.03520480026032. [DOI] [PubMed] [Google Scholar]
  9. Licciardello J. T., Spitz M. R., Hong W. K. Multiple primary cancer in patients with cancer of the head and neck: second cancer of the head and neck, esophagus, and lung. Int J Radiat Oncol Biol Phys. 1989 Sep;17(3):467–476. doi: 10.1016/0360-3016(89)90096-5. [DOI] [PubMed] [Google Scholar]
  10. Maestro R., Gasparotto D., Vukosavljevic T., Barzan L., Sulfaro S., Boiocchi M. Three discrete regions of deletion at 3p in head and neck cancers. Cancer Res. 1993 Dec 1;53(23):5775–5779. [PubMed] [Google Scholar]
  11. Mao L., Fan Y. H., Lotan R., Hong W. K. Frequent abnormalities of FHIT, a candidate tumor suppressor gene, in head and neck cancer cell lines. Cancer Res. 1996 Nov 15;56(22):5128–5131. [PubMed] [Google Scholar]
  12. Mao L. Tumor suppressor genes: does FHIT fit? J Natl Cancer Inst. 1998 Mar 18;90(6):412–414. doi: 10.1093/jnci/90.6.412. [DOI] [PubMed] [Google Scholar]
  13. Ohta M., Inoue H., Cotticelli M. G., Kastury K., Baffa R., Palazzo J., Siprashvili Z., Mori M., McCue P., Druck T. The FHIT gene, spanning the chromosome 3p14.2 fragile site and renal carcinoma-associated t(3;8) breakpoint, is abnormal in digestive tract cancers. Cell. 1996 Feb 23;84(4):587–597. doi: 10.1016/s0092-8674(00)81034-x. [DOI] [PubMed] [Google Scholar]
  14. Otterson G. A., Xiao G. H., Geradts J., Jin F., Chen W. D., Niklinska W., Kaye F. J., Yeung R. S. Protein expression and functional analysis of the FHIT gene in human tumor cells. J Natl Cancer Inst. 1998 Mar 18;90(6):426–432. doi: 10.1093/jnci/90.6.426. [DOI] [PubMed] [Google Scholar]
  15. Panagopoulos I., Thelin S., Mertens F., Mitelman F., Aman P. Variable FHIT transcripts in non-neoplastic tissues. Genes Chromosomes Cancer. 1997 Aug;19(4):215–219. doi: 10.1002/(sici)1098-2264(199708)19:4<215::aid-gcc2>3.0.co;2-#. [DOI] [PubMed] [Google Scholar]
  16. Papadimitrakopoulou V. A., Shin D. M., Hong W. K. Molecular and cellular biomarkers for field cancerization and multistep process in head and neck tumorigenesis. Cancer Metastasis Rev. 1996 Mar;15(1):53–76. doi: 10.1007/BF00049487. [DOI] [PubMed] [Google Scholar]
  17. SLAUGHTER D. P., SOUTHWICK H. W., SMEJKAL W. Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin. Cancer. 1953 Sep;6(5):963–968. doi: 10.1002/1097-0142(195309)6:5<963::aid-cncr2820060515>3.0.co;2-q. [DOI] [PubMed] [Google Scholar]
  18. Silverman S., Jr, Gorsky M., Lozada F. Oral leukoplakia and malignant transformation. A follow-up study of 257 patients. Cancer. 1984 Feb 1;53(3):563–568. doi: 10.1002/1097-0142(19840201)53:3<563::aid-cncr2820530332>3.0.co;2-f. [DOI] [PubMed] [Google Scholar]
  19. Siprashvili Z., Sozzi G., Barnes L. D., McCue P., Robinson A. K., Eryomin V., Sard L., Tagliabue E., Greco A., Fusetti L. Replacement of Fhit in cancer cells suppresses tumorigenicity. Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13771–13776. doi: 10.1073/pnas.94.25.13771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sozzi G., Sard L., De Gregorio L., Marchetti A., Musso K., Buttitta F., Tornielli S., Pellegrini S., Veronese M. L., Manenti G. Association between cigarette smoking and FHIT gene alterations in lung cancer. Cancer Res. 1997 Jun 1;57(11):2121–2123. [PubMed] [Google Scholar]
  21. Sozzi G., Veronese M. L., Negrini M., Baffa R., Cotticelli M. G., Inoue H., Tornielli S., Pilotti S., De Gregorio L., Pastorino U. The FHIT gene 3p14.2 is abnormal in lung cancer. Cell. 1996 Apr 5;85(1):17–26. doi: 10.1016/s0092-8674(00)81078-8. [DOI] [PubMed] [Google Scholar]
  22. Takezaki T., Hirose K., Inoue M., Hamajima N., Kuroishi T., Nakamura S., Koshikawa T., Matsuura H., Tajima K. Tobacco, alcohol and dietary factors associated with the risk of oral cancer among Japanese. Jpn J Cancer Res. 1996 Jun;87(6):555–562. doi: 10.1111/j.1349-7006.1996.tb00259.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Tanimoto K., Hayashi S., Yoshiga K., Ichikawa T. Polymorphisms of the CYP1A1 and GSTM1 gene involved in oral squamous cell carcinoma in association with a cigarette dose. Oral Oncol. 1999 Mar;35(2):191–196. doi: 10.1016/s1368-8375(98)00094-3. [DOI] [PubMed] [Google Scholar]
  24. Todd R., Donoff R. B., Wong D. T. The molecular biology of oral carcinogenesis: toward a tumor progression model. J Oral Maxillofac Surg. 1997 Jun;55(6):613–625. doi: 10.1016/s0278-2391(97)90495-x. [DOI] [PubMed] [Google Scholar]
  25. Tsuchiya E., Nakamura Y., Weng S. Y., Nakagawa K., Tsuchiya S., Sugano H., Kitagawa T. Allelotype of non-small cell lung carcinoma--comparison between loss of heterozygosity in squamous cell carcinoma and adenocarcinoma. Cancer Res. 1992 May 1;52(9):2478–2481. [PubMed] [Google Scholar]
  26. Virgilio L., Shuster M., Gollin S. M., Veronese M. L., Ohta M., Huebner K., Croce C. M. FHIT gene alterations in head and neck squamous cell carcinomas. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9770–9775. doi: 10.1073/pnas.93.18.9770. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES