Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 2000 Feb;82(4):924–930. doi: 10.1054/bjoc.1999.1020

Dipyridamole potentiates the in vitro activity of MTA (LY231514) by inhibition of thymidine transport

P G Smith 1, E Marshman 1, D R Newell 1, N J Curtin 1
PMCID: PMC2374405  PMID: 10732767

Abstract

The novel pyrrolopyrimidine-based antifolate LY231514 (MTA), inhibits multiple folate-requiring enzymes including thymidylate synthase, glycinamide ribonucleotide formyltransferase and dihydrofolate reductase. Both thymidine and hypoxanthine are required to reverse MTA growth inhibition in leukaemia and colon cancer cells. Prevention of MTA growth inhibition by thymidine and/or hypoxanthine was investigated in two human lung (A549, COR L23) and two breast (MCF7, T47D) tumour cell lines, and the effect of the nucleoside/base transport inhibitor dipyridamole (DP) on thymidine and hypoxanthine rescue defined. MTA IC50values (continuous exposure three population doublings) were: A549–640 n M, COR L23–28 n M, MCF7–52 n M and T47D–46 n M. Thymidine (1 μM) completely prevented growth inhibition at the MTA IC50in all cell lines. At 10 × IC50, growth inhibition was only partially reversed by thymidine (≤ 10 μM); both thymidine and hypoxanthine (30 μM) being required for complete reversal, reflecting the multi-targeted nature of MTA. Growth inhibition by MTA was not affected by hypoxanthine alone. A non-toxic concentration (1 μM) of DP prevented thymidine/hypoxanthine rescue of MTA indicating that DP may potentiate MTA activity by preventing nucleoside and/or base salvage. Thymidine transport was inhibited by ≥ 89% by 1 μM DP in all cell lines, whereas hypoxanthine transport was inhibited only in A549 and MCF7 cells. Therefore, prevention of end-product reversal of MTA-induced growth inhibition by DP can be explained by inhibition of thymidine transport alone. © 2000 Cancer Research Campaign

Keywords: dipyridamole, LY231514, thymidine transport, hypoxanthine transport

Full Text

The Full Text of this article is available as a PDF (124.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Calvert A. H., Walling J. M. Clinical studies with MTA. Br J Cancer. 1998;78 (Suppl 3):35–40. doi: 10.1038/bjc.1998.752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chan T. C., Howell S. B. Role of hypoxanthine and thymidine in determining methotrexate plus dipyridamole cytotoxicity. Eur J Cancer. 1990;26(8):907–911. doi: 10.1016/0277-5379(90)90198-3. [DOI] [PubMed] [Google Scholar]
  3. Chen T. R. In situ detection of mycoplasma contamination in cell cultures by fluorescent Hoechst 33258 stain. Exp Cell Res. 1977 Feb;104(2):255–262. doi: 10.1016/0014-4827(77)90089-1. [DOI] [PubMed] [Google Scholar]
  4. Curtin N. J., Harris A. L., Aherne G. W. Mechanism of cell death following thymidylate synthase inhibition: 2'-deoxyuridine-5'-triphosphate accumulation, DNA damage, and growth inhibition following exposure to CB3717 and dipyridamole. Cancer Res. 1991 May 1;51(9):2346–2352. [PubMed] [Google Scholar]
  5. Curtin N. J., Harris A. L. Potentiation of quinazoline antifolate (CB3717) toxicity by dipyridamole in human lung carcinoma, A549, cells. Biochem Pharmacol. 1988 Jun 1;37(11):2113–2120. doi: 10.1016/0006-2952(88)90568-0. [DOI] [PubMed] [Google Scholar]
  6. Curtin N. J., Newell D. R., Harris A. L. Modulation of dipyridamole action by alpha 1 acid glycoprotein. Reduced potentiation of quinazoline antifolate (CB3717) cytotoxicity by dipyridamole. Biochem Pharmacol. 1989 Oct 1;38(19):3281–3288. doi: 10.1016/0006-2952(89)90626-6. [DOI] [PubMed] [Google Scholar]
  7. Howell S. B., Mansfield S. J., Taetle R. Significance of variation in serum thymidine concentration for the marrow toxicity of methotrexate. Cancer Chemother Pharmacol. 1981;5(4):221–226. doi: 10.1007/BF00434388. [DOI] [PubMed] [Google Scholar]
  8. Hughes J. M., Tattersall M. H. Potentiation of methotrexate lymphocytotoxicity in vitro by inhibitors of nucleoside transport. Br J Cancer. 1989 Mar;59(3):381–384. doi: 10.1038/bjc.1989.76. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jackman A. L., Taylor G. A., Gibson W., Kimbell R., Brown M., Calvert A. H., Judson I. R., Hughes L. R. ICI D1694, a quinazoline antifolate thymidylate synthase inhibitor that is a potent inhibitor of L1210 tumor cell growth in vitro and in vivo: a new agent for clinical study. Cancer Res. 1991 Oct 15;51(20):5579–5586. [PubMed] [Google Scholar]
  10. Kinsella A. R., Haran M. S. Decreasing sensitivity to cytotoxic agents parallels increasing tumorigenicity in human fibroblasts. Cancer Res. 1991 Apr 1;51(7):1855–1859. [PubMed] [Google Scholar]
  11. Kremer J. M., Wilting J., Janssen L. H. Drug binding to human alpha-1-acid glycoprotein in health and disease. Pharmacol Rev. 1988 Mar;40(1):1–47. [PubMed] [Google Scholar]
  12. Mahony C., Wolfram K. M., Cocchetto D. M., Bjornsson T. D. Dipyridamol kinetics. Clin Pharmacol Ther. 1982 Mar;31(3):330–338. doi: 10.1038/clpt.1982.42. [DOI] [PubMed] [Google Scholar]
  13. Marshman E., Newell D. R., Calvert A. H., Dickinson A. M., Patel H. R., Campbell F. C., Curtin N. J. Dipyridamole potentiates antipurine antifolate activity in the presence of hypoxanthine in tumor cells but not in normal tissues in vitro. Clin Cancer Res. 1998 Nov;4(11):2895–2902. [PubMed] [Google Scholar]
  14. Nelson J. A., Drake S. Potentiation of methotrexate toxicity by dipyridamole. Cancer Res. 1984 Jun;44(6):2493–2496. [PubMed] [Google Scholar]
  15. Paterson A. R., Kolassa N., Cass C. E. Transport of nucleoside drugs in animal cells. Pharmacol Ther. 1981;12(3):515–536. doi: 10.1016/0163-7258(81)90096-6. [DOI] [PubMed] [Google Scholar]
  16. Plagemann P. G., Wohlhueter R. M. Hypoxanthine transport in mammalian cells: cell type-specific differences in sensitivity to inhibition by dipyridamole and uridine. J Membr Biol. 1984;81(3):255–262. doi: 10.1007/BF01868718. [DOI] [PubMed] [Google Scholar]
  17. Plagemann P. G., Wohlhueter R. M. Nucleoside transport in cultured mammalian cells. Multiple forms with different sensitivity to inhibition by nitrobenzylthioinosine or hypoxanthine. Biochim Biophys Acta. 1984 Jun 13;773(1):39–52. doi: 10.1016/0005-2736(84)90548-0. [DOI] [PubMed] [Google Scholar]
  18. Shih C., Chen V. J., Gossett L. S., Gates S. B., MacKellar W. C., Habeck L. L., Shackelford K. A., Mendelsohn L. G., Soose D. J., Patel V. F. LY231514, a pyrrolo[2,3-d]pyrimidine-based antifolate that inhibits multiple folate-requiring enzymes. Cancer Res. 1997 Mar 15;57(6):1116–1123. [PubMed] [Google Scholar]
  19. Taylor G. A., Jackman A. L., Calvert A. H., Harrap K. R. Plasma nucleoside and base levels following treatment with the new thymidylate synthetase inhibitor CB 3717. Adv Exp Med Biol. 1984;165(Pt B):379–382. doi: 10.1007/978-1-4757-0390-0_72. [DOI] [PubMed] [Google Scholar]
  20. Traut T. W. Physiological concentrations of purines and pyrimidines. Mol Cell Biochem. 1994 Nov 9;140(1):1–22. doi: 10.1007/BF00928361. [DOI] [PubMed] [Google Scholar]
  21. Turner R. N., Aherne G. W., Curtin N. J. Selective potentiation of lometrexol growth inhibition by dipyridamole through cell-specific inhibition of hypoxanthine salvage. Br J Cancer. 1997;76(10):1300–1307. doi: 10.1038/bjc.1997.552. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Van Mouwerik T. J., Pangallo C. A., Willson J. K., Fischer P. H. Augmentation of methotrexate cytotoxicity in human colon cancer cells achieved through inhibition of thymidine salvage by dipyridamole. Biochem Pharmacol. 1987 Mar 15;36(6):809–814. doi: 10.1016/0006-2952(87)90168-7. [DOI] [PubMed] [Google Scholar]
  23. Wadler S., Subar M., Green M. D., Wiernik P. H., Muggia F. M. Phase II trial of oral methotrexate and dipyridamole in colorectal carcinoma. Cancer Treat Rep. 1987 Sep;71(9):821–824. [PubMed] [Google Scholar]
  24. Ward W. H., Kimbell R., Jackman A. L. Kinetic characteristics of ICI D1694: a quinazoline antifolate which inhibits thymidylate synthase. Biochem Pharmacol. 1992 May 8;43(9):2029–2031. doi: 10.1016/0006-2952(92)90646-z. [DOI] [PubMed] [Google Scholar]
  25. Weber G. Biochemical strategy of cancer cells and the design of chemotherapy: G. H. A. Clowes Memorial Lecture. Cancer Res. 1983 Aug;43(8):3466–3492. [PubMed] [Google Scholar]
  26. Willson J. K., Fischer P. H., Remick S. C., Tutsch K. D., Grem J. L., Nieting L., Alberti D., Bruggink J., Trump D. L. Methotrexate and dipyridamole combination chemotherapy based upon inhibition of nucleoside salvage in humans. Cancer Res. 1989 Apr 1;49(7):1866–1870. [PubMed] [Google Scholar]
  27. Wohlhueter R. M., Marz R., Graff J. C., Plagemann P. G. A rapid-mixing technique to measure transport in suspended animal cells: applications to nucleoside transport in Novikoff rat hepatoma cells. Methods Cell Biol. 1978;20:211–236. doi: 10.1016/s0091-679x(08)62020-8. [DOI] [PubMed] [Google Scholar]
  28. Wung W. E., Howell S. B. Hypoxanthine concentrations in normal subjects and patients with solid tumors and leukemia. Cancer Res. 1984 Jul;44(7):3144–3148. [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES