Abstract
The major envelope glycoproteins gp120 and gp41 of human immunodeficiency virus type 1, the causative agent for human AIDS, contain numerous N-linked oligosaccharides. We report here our discovery that N-acetylglucosamine residues within the complex-type N-linked oligosaccharides of both gp120 and its precursor, gp160, are sulfated. When human Molt-3 cells persistently infected with human T-cell leukemia virus IIIB were metabolically radiolabeled with 35SO4, gp160, gp120, and to some extent gp41 were radiolabeled. The 35SO4-labeled oligosaccharides were quantitatively released by N-glycanase treatment and were bound by immobilized Ricinus communis agglutinin I, a lectin that binds to terminal beta-galactosyl residues. The kinetics of release of sulfate upon acid hydrolysis from 35SO4-labeled gp120 indicate that sulfation occurs in a primary sulfate ester linkage. Methylation analysis of total glycopeptides from Molt-3 cells metabolically radiolabeled with [3H]glucosamine demonstrates that sulfation occurs at the C-6 position of N-acetylglucosamine. Fragmentation of the gp120-derived 35SO4-labeled glycopeptides by treatment with hydrazine and nitrous acid and subsequent reduction generated galactosyl-anhydromannitol-6-35SO4, which is the expected reaction product from GlcNAc-6-sulfate within a sulfated lactosamine moiety. Charge analysis of the [3H]galactose- and [3H]glucosamine-labeled glycopeptides from gp120 and gp160 indicates that approximately 14% of the complex-type N-linked oligosaccharides are sulfated.
Full text
PDF









Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baba M., Nakajima M., Schols D., Pauwels R., Balzarini J., De Clercq E. Pentosan polysulfate, a sulfated oligosaccharide, is a potent and selective anti-HIV agent in vitro. Antiviral Res. 1988 Sep;9(6):335–343. doi: 10.1016/0166-3542(88)90035-6. [DOI] [PubMed] [Google Scholar]
- Baenziger J. U., Fiete D. Structural determinants of Ricinus communis agglutinin and toxin specificity for oligosaccharides. J Biol Chem. 1979 Oct 10;254(19):9795–9799. [PubMed] [Google Scholar]
- Bagasra O., Lischner H. W. Activity of dextran sulfate and other polyanionic polysaccharides against human immunodeficiency virus. J Infect Dis. 1988 Nov;158(5):1084–1087. doi: 10.1093/infdis/158.5.1084. [DOI] [PubMed] [Google Scholar]
- Braulke T., Hille A., Huttner W. B., Hasilik A., von Figura K. Sulfated oligosaccharides in human lysosomal enzymes. Biochem Biophys Res Commun. 1987 Feb 27;143(1):178–185. doi: 10.1016/0006-291x(87)90647-4. [DOI] [PubMed] [Google Scholar]
- Chakrabarti S., Robert-Guroff M., Wong-Staal F., Gallo R. C., Moss B. Expression of the HTLV-III envelope gene by a recombinant vaccinia virus. Nature. 1986 Apr 10;320(6062):535–537. doi: 10.1038/320535a0. [DOI] [PubMed] [Google Scholar]
- Colburn P., Buonassisi V., Dietrich C. P., Nader H. B. N-glycansulfated fibronectin: one of the several sulfated glycoproteins synthesized by endothelial cells in culture. Biochem Biophys Res Commun. 1987 Sep 30;147(3):920–926. doi: 10.1016/s0006-291x(87)80158-4. [DOI] [PubMed] [Google Scholar]
- Cummings R. D., Kornfeld S. Characterization of the structural determinants required for the high affinity interaction of asparagine-linked oligosaccharides with immobilized Phaseolus vulgaris leukoagglutinating and erythroagglutinating lectins. J Biol Chem. 1982 Oct 10;257(19):11230–11234. [PubMed] [Google Scholar]
- Cummings R. D., Merkle R. K., Stults N. L. Separation and analysis of glycoprotein oligosaccharides. Methods Cell Biol. 1989;32:141–183. doi: 10.1016/s0091-679x(08)61170-x. [DOI] [PubMed] [Google Scholar]
- Dahms N. M., Lobel P., Kornfeld S. Mannose 6-phosphate receptors and lysosomal enzyme targeting. J Biol Chem. 1989 Jul 25;264(21):12115–12118. [PubMed] [Google Scholar]
- Edge A. S., Spiro R. G. Structural elucidation of glycosaminoglycans through characterization of disaccharides obtained after fragmentation by hydrazine-nitrous acid treatment. Arch Biochem Biophys. 1985 Aug 1;240(2):560–572. doi: 10.1016/0003-9861(85)90063-3. [DOI] [PubMed] [Google Scholar]
- Feizi T., Larkin M. AIDS and glycosylation. Glycobiology. 1990 Sep;1(1):17–23. doi: 10.1093/glycob/1.1.17. [DOI] [PubMed] [Google Scholar]
- Fiete D., Srivastava V., Hindsgaul O., Baenziger J. U. A hepatic reticuloendothelial cell receptor specific for SO4-4GalNAc beta 1,4GlcNAc beta 1,2Man alpha that mediates rapid clearance of lutropin. Cell. 1991 Dec 20;67(6):1103–1110. doi: 10.1016/0092-8674(91)90287-9. [DOI] [PubMed] [Google Scholar]
- Freeze H. H., Varki A. Endo-glycosidase F and peptide N-glycosidase F release the great majority of total cellular N-linked oligosaccharides: use in demonstrating that sulfated N-linked oligosaccharides are frequently found in cultured cells. Biochem Biophys Res Commun. 1986 Nov 14;140(3):967–973. doi: 10.1016/0006-291x(86)90730-8. [DOI] [PubMed] [Google Scholar]
- Freeze H. H., Wolgast D. Structural analysis of N-linked oligosaccharides from glycoproteins secreted by Dictyostelium discoideum. Identification of mannose 6-sulfate. J Biol Chem. 1986 Jan 5;261(1):127–134. [PubMed] [Google Scholar]
- Gattegno L., Sadeghi H., Saffar L., Bladier D., Clerget-Raslain B., Gluckman J. C., Bahraoui E. N-Acetyl-beta-D-glucosaminyl-binding properties of the envelope glycoprotein of human immunodeficiency virus type 1. Carbohydr Res. 1991 Jun 25;213:79–93. doi: 10.1016/s0008-6215(00)90600-1. [DOI] [PubMed] [Google Scholar]
- Green E. D., Baenziger J. U. Asparagine-linked oligosaccharides on lutropin, follitropin, and thyrotropin. I. Structural elucidation of the sulfated and sialylated oligosaccharides on bovine, ovine, and human pituitary glycoprotein hormones. J Biol Chem. 1988 Jan 5;263(1):25–35. [PubMed] [Google Scholar]
- Green E. D., Baenziger J. U. Asparagine-linked oligosaccharides on lutropin, follitropin, and thyrotropin. II. Distributions of sulfated and sialylated oligosaccharides on bovine, ovine, and human pituitary glycoprotein hormones. J Biol Chem. 1988 Jan 5;263(1):36–44. [PubMed] [Google Scholar]
- Griswold M. D., Roberts K., Bishop P. Purification and characterization of a sulfated glycoprotein secreted by Sertoli cells. Biochemistry. 1986 Nov 18;25(23):7265–7270. doi: 10.1021/bi00371a003. [DOI] [PubMed] [Google Scholar]
- Harouse J. M., Bhat S., Spitalnik S. L., Laughlin M., Stefano K., Silberberg D. H., Gonzalez-Scarano F. Inhibition of entry of HIV-1 in neural cell lines by antibodies against galactosyl ceramide. Science. 1991 Jul 19;253(5017):320–323. doi: 10.1126/science.1857969. [DOI] [PubMed] [Google Scholar]
- Hatanaka K., Kurihara Y., Uryu T., Yoshida O., Yamamoto N., Mimura T., Kaneko Y. A strong inhibition of HIV-induced cytopathic effects by synthetic (1----6)-alpha-D-mannopyranan sulfate. Carbohydr Res. 1991 Jul 18;214(1):147–154. doi: 10.1016/s0008-6215(00)90537-8. [DOI] [PubMed] [Google Scholar]
- Heifetz A., Kinsey W. H., Lennarz W. J. Synthesis of a novel class of sulfated glycoproteins in embryonic liver and lung. J Biol Chem. 1980 May 25;255(10):4528–4534. [PubMed] [Google Scholar]
- Hoogewerf A. J., Bensadoun A. Occurrence of sulfate in an asparagine-linked complex oligosaccharide of chicken adipose lipoprotein lipase. J Biol Chem. 1991 Jan 15;266(2):1048–1057. [PubMed] [Google Scholar]
- Hope R. G., Marsden H. S. Processing of glycoproteins induced by herpes simplex virus type 1: sulphation and nature of the oligosaccharide linkages. J Gen Virol. 1983 Sep;64(Pt 9):1943–1953. doi: 10.1099/0022-1317-64-9-1943. [DOI] [PubMed] [Google Scholar]
- Hsu C. H., Kingsbury D. W. Contribution of oligosaccharide sulfation to the charge heterogeneity of a viral glycoprotein. J Biol Chem. 1982 Aug 10;257(15):9035–9038. [PubMed] [Google Scholar]
- Hu S. L., Kosowski S. G., Dalrymple J. M. Expression of AIDS virus envelope gene in recombinant vaccinia viruses. Nature. 1986 Apr 10;320(6062):537–540. doi: 10.1038/320537a0. [DOI] [PubMed] [Google Scholar]
- Imai Y., Singer M. S., Fennie C., Lasky L. A., Rosen S. D. Identification of a carbohydrate-based endothelial ligand for a lymphocyte homing receptor. J Cell Biol. 1991 Jun;113(5):1213–1221. doi: 10.1083/jcb.113.5.1213. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ito M., Baba M., Sato A., Pauwels R., De Clercq E., Shigeta S. Inhibitory effect of dextran sulfate and heparin on the replication of human immunodeficiency virus (HIV) in vitro. Antiviral Res. 1987 Jul;7(6):361–367. doi: 10.1016/0166-3542(87)90018-0. [DOI] [PubMed] [Google Scholar]
- Kornfeld K., Reitman M. L., Kornfeld R. The carbohydrate-binding specificity of pea and lentil lectins. Fucose is an important determinant. J Biol Chem. 1981 Jul 10;256(13):6633–6640. [PubMed] [Google Scholar]
- Lacoste C. H., Freeze H. H., Jones J. A., Kaplan A. Characteristics of the sulfation of N-linked oligosaccharides in vesicles from Dictyostelium discoideum: in vitro sulfation of lysosomal enzymes. Arch Biochem Biophys. 1989 Sep;273(2):505–515. doi: 10.1016/0003-9861(89)90510-9. [DOI] [PubMed] [Google Scholar]
- Lederman S., Gulick R., Chess L. Dextran sulfate and heparin interact with CD4 molecules to inhibit the binding of coat protein (gp120) of HIV. J Immunol. 1989 Aug 15;143(4):1149–1154. [PubMed] [Google Scholar]
- Leonard C. K., Spellman M. W., Riddle L., Harris R. J., Thomas J. N., Gregory T. J. Assignment of intrachain disulfide bonds and characterization of potential glycosylation sites of the type 1 recombinant human immunodeficiency virus envelope glycoprotein (gp120) expressed in Chinese hamster ovary cells. J Biol Chem. 1990 Jun 25;265(18):10373–10382. [PubMed] [Google Scholar]
- McCune J. M., Rabin L. B., Feinberg M. B., Lieberman M., Kosek J. C., Reyes G. R., Weissman I. L. Endoproteolytic cleavage of gp160 is required for the activation of human immunodeficiency virus. Cell. 1988 Apr 8;53(1):55–67. doi: 10.1016/0092-8674(88)90487-4. [DOI] [PubMed] [Google Scholar]
- Merkle R. K., Cummings R. D. Lectin affinity chromatography of glycopeptides. Methods Enzymol. 1987;138:232–259. doi: 10.1016/0076-6879(87)38020-6. [DOI] [PubMed] [Google Scholar]
- Merkle R. K., Helland D. E., Welles J. L., Shilatifard A., Haseltine W. A., Cummings R. D. gp160 of HIV-I synthesized by persistently infected Molt-3 cells is terminally glycosylated: evidence that cleavage of gp160 occurs subsequent to oligosaccharide processing. Arch Biochem Biophys. 1991 Oct;290(1):248–257. doi: 10.1016/0003-9861(91)90616-q. [DOI] [PubMed] [Google Scholar]
- Mitsuya H., Looney D. J., Kuno S., Ueno R., Wong-Staal F., Broder S. Dextran sulfate suppression of viruses in the HIV family: inhibition of virion binding to CD4+ cells. Science. 1988 Apr 29;240(4852):646–649. doi: 10.1126/science.2452480. [DOI] [PubMed] [Google Scholar]
- Mizuochi T., Matthews T. J., Kato M., Hamako J., Titani K., Solomon J., Feizi T. Diversity of oligosaccharide structures on the envelope glycoprotein gp 120 of human immunodeficiency virus 1 from the lymphoblastoid cell line H9. Presence of complex-type oligosaccharides with bisecting N-acetylglucosamine residues. J Biol Chem. 1990 May 25;265(15):8519–8524. [PubMed] [Google Scholar]
- Mizuochi T., Spellman M. W., Larkin M., Solomon J., Basa L. J., Feizi T. Carbohydrate structures of the human-immunodeficiency-virus (HIV) recombinant envelope glycoprotein gp120 produced in Chinese-hamster ovary cells. Biochem J. 1988 Sep 1;254(2):599–603. doi: 10.1042/bj2540599. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mizuochi T., Spellman M. W., Larkin M., Solomon J., Basa L. J., Feizi T. Structural characterization by chromatographic profiling of the oligosaccharides of human immunodeficiency virus (HIV) recombinant envelope glycoprotein gp120 produced in Chinese hamster ovary cells. Biomed Chromatogr. 1988 Nov;2(6):260–270. doi: 10.1002/bmc.1130020608. [DOI] [PubMed] [Google Scholar]
- Nakamura K., Compans R. W. Effects of glucosamine, 2-deoxyglucose, and tunicamycin on glycosylation, sulfation, and assembly of influenza viral proteins. Virology. 1978 Feb;84(2):303–319. doi: 10.1016/0042-6822(78)90250-7. [DOI] [PubMed] [Google Scholar]
- Nakashima H., Yoshida O., Tochikura T. S., Yoshida T., Mimura T., Kido Y., Motoki Y., Kaneko Y., Uryu T., Yamamoto N. Sulfation of polysaccharides generates potent and selective inhibitors of human immunodeficiency virus infection and replication in vitro. Jpn J Cancer Res. 1987 Nov;78(11):1164–1168. [PubMed] [Google Scholar]
- Pinter A., Compans R. W. Sulfated components of enveloped viruses. J Virol. 1975 Oct;16(4):859–866. doi: 10.1128/jvi.16.4.859-866.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Poduslo J. F. Golgi sulfation of the oligosaccharide chain of P0 occurs in the presence of myelin assembly but not in its absence. J Biol Chem. 1990 Mar 5;265(7):3719–3725. [PubMed] [Google Scholar]
- Prehm P., Scheid A., Choppin P. W. The carbohydrate structure of the glycoproteins of the paramyxovirus SV5 grown in bovine kidney cells. J Biol Chem. 1979 Oct 10;254(19):9669–9677. [PubMed] [Google Scholar]
- REES D. A. A NOTE ON THE CHARACTERIZATION OF CARBOHYDRATE SULPHATES BY ACID HYDROLYSIS. Biochem J. 1963 Aug;88:343–345. doi: 10.1042/bj0880343. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robey W. G., Safai B., Oroszlan S., Arthur L. O., Gonda M. A., Gallo R. C., Fischinger P. J. Characterization of envelope and core structural gene products of HTLV-III with sera from AIDS patients. Science. 1985 May 3;228(4699):593–595. doi: 10.1126/science.2984774. [DOI] [PubMed] [Google Scholar]
- Roux L., Holojda S., Sundblad G., Freeze H. H., Varki A. Sulfated N-linked oligosaccharides in mammalian cells. I. Complex-type chains with sialic acids and O-sulfate esters. J Biol Chem. 1988 Jun 25;263(18):8879–8889. [PubMed] [Google Scholar]
- Schols D., Pauwels R., Desmyter J., De Clercq E. Dextran sulfate and other polyanionic anti-HIV compounds specifically interact with the viral gp120 glycoprotein expressed by T-cells persistently infected with HIV-1. Virology. 1990 Apr;175(2):556–561. doi: 10.1016/0042-6822(90)90440-3. [DOI] [PubMed] [Google Scholar]
- Skelton T. P., Hooper L. V., Srivastava V., Hindsgaul O., Baenziger J. U. Characterization of a sulfotransferase responsible for the 4-O-sulfation of terminal beta-N-acetyl-D-galactosamine on asparagine-linked oligosaccharides of glycoprotein hormones. J Biol Chem. 1991 Sep 15;266(26):17142–17150. [PubMed] [Google Scholar]
- Spiro R. G., Bhoyroo V. D. Occurrence of sulfate in the asparagine-linked complex carbohydrate units of thyroglobulin. Identification and localization of galactose 3-sulfate and N-acetylglucosamine 6-sulfate residues in the human and calf proteins. J Biol Chem. 1988 Oct 5;263(28):14351–14358. [PubMed] [Google Scholar]
- Stadler J., Gerisch G., Bauer G., Suchanek C., Huttner W. B. In vivo sulfation of the contact site A glycoprotein of Dictyostelium discoideum. EMBO J. 1983;2(7):1137–1143. doi: 10.1002/j.1460-2075.1983.tb01558.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stein B. S., Engleman E. G. Intracellular processing of the gp160 HIV-1 envelope precursor. Endoproteolytic cleavage occurs in a cis or medial compartment of the Golgi complex. J Biol Chem. 1990 Feb 15;265(5):2640–2649. [PubMed] [Google Scholar]
- Sundblad G., Holojda S., Roux L., Varki A., Freeze H. H. Sulfated N-linked oligosaccharides in mammalian cells. II. Identification of glycosaminoglycan-like chains attached to complex-type glycans. J Biol Chem. 1988 Jun 25;263(18):8890–8896. [PubMed] [Google Scholar]
- Sundblad G., Kajiji S., Quaranta V., Freeze H. H., Varki A. Sulfated N-linked oligosaccharides in mammalian cells. III. Characterization of a pancreatic carcinoma cell surface glycoprotein with N- and O-sulfate esters on asparagine-linked glycans. J Biol Chem. 1988 Jun 25;263(18):8897–8903. [PubMed] [Google Scholar]
- Ueno R., Kuno S. Dextran sulphate, a potent anti-HIV agent in vitro having synergism with zidovudine. Lancet. 1987 Jun 13;1(8546):1379–1379. doi: 10.1016/s0140-6736(87)90681-7. [DOI] [PubMed] [Google Scholar]
- Varki A., Kornfeld S. The spectrum of anionic oligosaccharides released by endo-beta-N-acetylglucosaminidase H from glycoproteins. Structural studies and interactions with the phosphomannosyl receptor. J Biol Chem. 1983 Mar 10;258(5):2808–2818. [PubMed] [Google Scholar]
- Veronese F. D., DeVico A. L., Copeland T. D., Oroszlan S., Gallo R. C., Sarngadharan M. G. Characterization of gp41 as the transmembrane protein coded by the HTLV-III/LAV envelope gene. Science. 1985 Sep 27;229(4720):1402–1405. doi: 10.1126/science.2994223. [DOI] [PubMed] [Google Scholar]
- Weaver T. E., Kropp K. L., Whitsett J. A. In vitro sulfation of pulmonary surfactant-associated protein-35. Biochim Biophys Acta. 1987 Aug 5;914(2):205–211. doi: 10.1016/0167-4838(87)90065-3. [DOI] [PubMed] [Google Scholar]
- von Würtemberg M. M., Fries E. Secretion of 35SO4-labeled proteins from isolated rat hepatocytes. Biochemistry. 1989 May 2;28(9):4088–4093. doi: 10.1021/bi00435a069. [DOI] [PubMed] [Google Scholar]