Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 2000 Mar 6;82(7):1276–1282. doi: 10.1054/bjoc.1999.1091

Genetic analysis of multiple synchronous lesions of the colon adenoma–carcinoma sequence

R Sedivy 1, B Wolf 2, M Kalipciyan 3, G G Steger 3, J Karner-Hanusch 3, R M Mader 3
PMCID: PMC2374497  PMID: 10755401

Abstract

The colorectal adenoma–carcinoma sequence represents a well-known paradigm for the sequential development of cancer driven by the accumulation of genomic defects. Although the colorectal adenoma–carcinoma sequence is well investigated, studies about tumours of different dignity co-existent in the same patient are seldom. In order to address the distribution of genetic alterations in different lesions of the same patient, we coincidently investigated carcinomas, adenomas and aberrant crypt foci in patients with sporadic colon cancer. By utilizing polymerase chain reaction, single-strand conformation polymorphism, heteroduplex-analysis, restriction fragment length polymorphism, protein truncation test and sequencing techniques we looked for mutations and microsatellite instability of APC, H- ras, K- ras, p53, DCC and the DNA repair genes hMLH1/hMSH2. In accordance with the suggested adenoma–carcinoma sequence of the colon, four patients reflected the progressive accumulation of genetic defects in synchronously appearing tumours during carcinogenesis. However, two patients with non-hereditary malignomas presented different genetic instabilities in different but synchronously appearing tumours suggesting non-clonal growth under almost identical conditions of the environment. Thus, sporadically manifesting multiple lesions of the colon were not necessarily driven by similar genetic mechanisms. Premalignant lesions may transform into malignant tumours starting from different types of genetic instability, which indicates independent and simultaneous tumorigenesis within the same organ. © 2000 Cancer Research Campaign

Keywords: adenoma–carcinoma sequence, aberrant crypt foci, carcinogenesis, colon cancer, mutation, microsatellite instability

Full Text

The Full Text of this article is available as a PDF (240.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boland C. R., Sato J., Saito K., Carethers J. M., Marra G., Laghi L., Chauhan D. P. Genetic instability and chromosomal aberrations in colorectal cancer: a review of the current models. Cancer Detect Prev. 1998;22(5):377–382. doi: 10.1046/j.1525-1500.1998.00050.x. [DOI] [PubMed] [Google Scholar]
  2. Breukel C., Tops C., van Leeuwen C., van der Klift H., Fodde R., Khan P. M. AT repeat polymorphism at the D5S122 locus tightly linked to adenomatous polyposis coli (APC). Nucleic Acids Res. 1991 Dec 11;19(23):6665–6665. doi: 10.1093/nar/19.23.6665-a. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Breukel C., Tops C., van Leeuwen C., van der Klift H., Nakamura Y., Fodde R., Khan P. M. CA repeat polymorphism at the D5S82 locus, proximal to adenomatous polyposis coli (APC). Nucleic Acids Res. 1991 Oct 25;19(20):5804–5804. doi: 10.1093/nar/19.20.5804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bufill J. A. Colorectal cancer: evidence for distinct genetic categories based on proximal or distal tumor location. Ann Intern Med. 1990 Nov 15;113(10):779–788. doi: 10.7326/0003-4819-113-10-779. [DOI] [PubMed] [Google Scholar]
  5. Cawkwell L., Lewis F. A., Quirke P. Frequency of allele loss of DCC, p53, RBI, WT1, NF1, NM23 and APC/MCC in colorectal cancer assayed by fluorescent multiplex polymerase chain reaction. Br J Cancer. 1994 Nov;70(5):813–818. doi: 10.1038/bjc.1994.404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Coffey D. S. Self-organization, complexity and chaos: the new biology for medicine. Nat Med. 1998 Aug;4(8):882–885. doi: 10.1038/nm0898-882. [DOI] [PubMed] [Google Scholar]
  7. Cross S. S., Bury J. P., Silcocks P. B., Stephenson T. J., Cotton D. W. Fractal geometric analysis of colorectal polyps. J Pathol. 1994 Apr;172(4):317–323. doi: 10.1002/path.1711720406. [DOI] [PubMed] [Google Scholar]
  8. Di Gregorio C., Losi L., Fante R., Modica S., Ghidoni M., Pedroni M., Tamassia M. G., Gafà L., Ponz de Leon M., Roncucci L. Histology of aberrant crypt foci in the human colon. Histopathology. 1997 Apr;30(4):328–334. doi: 10.1046/j.1365-2559.1997.d01-626.x. [DOI] [PubMed] [Google Scholar]
  9. Fearon E. R., Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990 Jun 1;61(5):759–767. doi: 10.1016/0092-8674(90)90186-i. [DOI] [PubMed] [Google Scholar]
  10. Friedl W., Mandl M., Sengteller M. Single-step screening method for the most common mutations in familial adenomatous polyposis. Hum Mol Genet. 1993 Sep;2(9):1481–1482. doi: 10.1093/hmg/2.9.1481. [DOI] [PubMed] [Google Scholar]
  11. Iniesta P., de Juan C., Caldés T., Vega F. J., Massa M. J., Cerdán F. J., López J. A., Fernández C., Sánchez A., Torres A. J. Genetic abnormalities and microsatellite instability in colorectal cancer. Cancer Detect Prev. 1998;22(5):383–395. doi: 10.1046/j.1525-1500.1998.00049.x. [DOI] [PubMed] [Google Scholar]
  12. Jiang W., Kahn S. M., Guillem J. G., Lu S. H., Weinstein I. B. Rapid detection of ras oncogenes in human tumors: applications to colon, esophageal, and gastric cancer. Oncogene. 1989 Jul;4(7):923–928. [PubMed] [Google Scholar]
  13. Jones M. H., Nakamura Y. Detection of loss of heterozygosity at the human TP53 locus using a dinucleotide repeat polymorphism. Genes Chromosomes Cancer. 1992 Jul;5(1):89–90. doi: 10.1002/gcc.2870050113. [DOI] [PubMed] [Google Scholar]
  14. Konishi M., Kikuchi-Yanoshita R., Tanaka K., Muraoka M., Onda A., Okumura Y., Kishi N., Iwama T., Mori T., Koike M. Molecular nature of colon tumors in hereditary nonpolyposis colon cancer, familial polyposis, and sporadic colon cancer. Gastroenterology. 1996 Aug;111(2):307–317. doi: 10.1053/gast.1996.v111.pm8690195. [DOI] [PubMed] [Google Scholar]
  15. Luce M. C., Marra G., Chauhan D. P., Laghi L., Carethers J. M., Cherian S. P., Hawn M., Binnie C. G., Kam-Morgan L. N., Cayouette M. C. In vitro transcription/translation assay for the screening of hMLH1 and hMSH2 mutations in familial colon cancer. Gastroenterology. 1995 Oct;109(4):1368–1374. doi: 10.1016/0016-5085(95)90600-2. [DOI] [PubMed] [Google Scholar]
  16. Maesawa C., Tamura G., Suzuki Y., Ogasawara S., Sakata K., Kashiwaba M., Satodate R. The sequential accumulation of genetic alterations characteristic of the colorectal adenoma-carcinoma sequence does not occur between gastric adenoma and adenocarcinoma. J Pathol. 1995 Jul;176(3):249–258. doi: 10.1002/path.1711760307. [DOI] [PubMed] [Google Scholar]
  17. Miyake S., Nagai K., Yoshino K., Oto M., Endo M., Yuasa Y. Point mutations and allelic deletion of tumor suppressor gene DCC in human esophageal squamous cell carcinomas and their relation to metastasis. Cancer Res. 1994 Jun 1;54(11):3007–3010. [PubMed] [Google Scholar]
  18. Posadas E. M., Criley S. R., Coffey D. S. Chaotic oscillations in cultured cells: rat prostate cancer. Cancer Res. 1996 Aug 15;56(16):3682–3688. [PubMed] [Google Scholar]
  19. Pretlow T. P., Barrow B. J., Ashton W. S., O'Riordan M. A., Pretlow T. G., Jurcisek J. A., Stellato T. A. Aberrant crypts: putative preneoplastic foci in human colonic mucosa. Cancer Res. 1991 Mar 1;51(5):1564–1567. [PubMed] [Google Scholar]
  20. Schwab E. D., Pienta K. J. Cancer as a complex adaptive system. Med Hypotheses. 1996 Sep;47(3):235–241. doi: 10.1016/s0306-9877(96)90086-9. [DOI] [PubMed] [Google Scholar]
  21. Sedivy R. Fractal tumours: their real and virtual images. Wien Klin Wochenschr. 1996;108(17):547–551. [PubMed] [Google Scholar]
  22. Sedivy R., Mader R. M. Fractals, chaos, and cancer: do they coincide? Cancer Invest. 1997;15(6):601–607. doi: 10.3109/07357909709047603. [DOI] [PubMed] [Google Scholar]
  23. Sedivy R. The potential role of apoptosis (programmed cell death) in a chaotic determined carcinogenesis. Med Hypotheses. 1996 May;46(5):455–457. doi: 10.1016/s0306-9877(96)90024-9. [DOI] [PubMed] [Google Scholar]
  24. Spirio L., Joslyn G., Nelson L., Leppert M., White R. A CA repeat 30-70 KB downstream from the adenomatous polyposis coli (APC) gene. Nucleic Acids Res. 1991 Nov 25;19(22):6348–6348. doi: 10.1093/nar/19.22.6348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Thibodeau S. N., Bren G., Schaid D. Microsatellite instability in cancer of the proximal colon. Science. 1993 May 7;260(5109):816–819. doi: 10.1126/science.8484122. [DOI] [PubMed] [Google Scholar]
  26. Waliszewski P. Complexity, dynamic cellular network, and tumorigenesis. Pol J Pathol. 1997;48(4):235–241. [PubMed] [Google Scholar]
  27. Waliszewski P., Molski M., Konarski J. On the holistic approach in cellular and cancer biology: nonlinearity, complexity, and quasi-determinism of the dynamic cellular network. J Surg Oncol. 1998 Jun;68(2):70–78. doi: 10.1002/(sici)1096-9098(199806)68:2<70::aid-jso2>3.0.co;2-h. [DOI] [PubMed] [Google Scholar]
  28. Weber J. L., May P. E. Dinucleotide repeat polymorphism at the D18S34 locus. Nucleic Acids Res. 1990 Apr 25;18(8):2201–2201. [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES