Abstract
The fluorinated pyrimidine nucleoside, 5′-deoxy-5-fluorouridine (5′-dFUrd) has been shown to effectively attenuate the progress of cachexia in the murine adenocarcinomas MAC16 and colon 26 as well as in the human uterine cervical carcinoma xenograft, Yumoto. Although concomitant inhibition of tumour growth was observed in all three models this was not sufficient to account for the preservation of body weight. An attempt has been made to correlate the anti-cachectic activity of 5′-dFUrd with the presence of a tumour produced proteolysis-inducing factor (PIF), thought to be responsible for the development of cachexia in the MAC16 model. Two variants of colon 26 adenocarcinoma were employed, clone 20 which produces profound cachexia, and clone 5 which produces no change in body weight in recipient animals. Mice bearing the colon 26, clone 20 variant showed evidence for the presence of PIF in tumour, serum and urine, while there was no evidence for the presence of PIF in tumour or body fluids of mice bearing the clone 5 tumours. Treatment of animals bearing the clone 20 variant with 5′-dF Urd led to the disappearance of PIF from the tumour, serum and urine concomitant with the attenuation of the development of cachexia. The human cervical carcinoma, Yumoto, which also induced cachexia in recipiant animals, showed expression of PIF in tumour, serum and urine in control and vehicle-treated mice, but was absent in mice treated with 5′-dFUrd. Thus in these experimental models cachexia appears to be correlated with the presence of PIF. © 2000 Cancer Research Campaign
Keywords: cancer cachexia, proteolysis-inducing factor, interleukin-6
Full Text
The Full Text of this article is available as a PDF (202.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beck S. A., Smith K. L., Tisdale M. J. Anticachectic and antitumor effect of eicosapentaenoic acid and its effect on protein turnover. Cancer Res. 1991 Nov 15;51(22):6089–6093. [PubMed] [Google Scholar]
- Beck S. A., Tisdale M. J. Production of lipolytic and proteolytic factors by a murine tumor-producing cachexia in the host. Cancer Res. 1987 Nov 15;47(22):5919–5923. [PubMed] [Google Scholar]
- Beutler B., Cerami A. Cachectin and tumour necrosis factor as two sides of the same biological coin. Nature. 1986 Apr 17;320(6063):584–588. doi: 10.1038/320584a0. [DOI] [PubMed] [Google Scholar]
- Cariuk P., Lorite M. J., Todorov P. T., Field W. N., Wigmore S. J., Tisdale M. J. Induction of cachexia in mice by a product isolated from the urine of cachectic cancer patients. Br J Cancer. 1997;76(5):606–613. doi: 10.1038/bjc.1997.433. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Double J. A., Bibby M. C. Therapeutic index: a vital component in selection of anticancer agents for clinical trial. J Natl Cancer Inst. 1989 Jul 5;81(13):988–994. doi: 10.1093/jnci/81.13.988. [DOI] [PubMed] [Google Scholar]
- Eda H., Tanaka Y., Ishitsuka H. 5'-Deoxy-5-fluorouridine improves cachexia by a mechanism independent of its antiproliferative action in colon 26 adenocarcinoma-bearing mice. Cancer Chemother Pharmacol. 1991;29(1):1–6. doi: 10.1007/BF00686327. [DOI] [PubMed] [Google Scholar]
- Fujiki F., Mukaida N., Hirose K., Ishida H., Harada A., Ohno S., Bluethmann H., Kawakami M., Akiyama M., Sone S. Prevention of adenocarcinoma colon 26-induced cachexia by interleukin 10 gene transfer. Cancer Res. 1997 Jan 1;57(1):94–99. [PubMed] [Google Scholar]
- Fujimoto-Ouchi K., Tamura S., Mori K., Tanaka Y., Ishitsuka H. Establishment and characterization of cachexia-inducing and -non-inducing clones of murine colon 26 carcinoma. Int J Cancer. 1995 May 16;61(4):522–528. doi: 10.1002/ijc.2910610416. [DOI] [PubMed] [Google Scholar]
- Lorite M. J., Cariuk P., Tisdale M. J. Induction of muscle protein degradation by a tumour factor. Br J Cancer. 1997;76(8):1035–1040. doi: 10.1038/bjc.1997.504. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lorite M. J., Thompson M. G., Drake J. L., Carling G., Tisdale M. J. Mechanism of muscle protein degradation induced by a cancer cachectic factor. Br J Cancer. 1998 Oct;78(7):850–856. doi: 10.1038/bjc.1998.592. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matthys P., Heremans H., Opdenakker G., Billiau A. Anti-interferon-gamma antibody treatment, growth of Lewis lung tumours in mice and tumour-associated cachexia. Eur J Cancer. 1991;27(2):182–187. doi: 10.1016/0277-5379(91)90483-t. [DOI] [PubMed] [Google Scholar]
- Moldawer L. L., Andersson C., Gelin J., Lundholm K. G. Regulation of food intake and hepatic protein synthesis by recombinant-derived cytokines. Am J Physiol. 1988 Mar;254(3 Pt 1):G450–G456. doi: 10.1152/ajpgi.1988.254.3.G450. [DOI] [PubMed] [Google Scholar]
- Mori M., Yamaguchi K., Honda S., Nagasaki K., Ueda M., Abe O., Abe K. Cancer cachexia syndrome developed in nude mice bearing melanoma cells producing leukemia-inhibitory factor. Cancer Res. 1991 Dec 15;51(24):6656–6659. [PubMed] [Google Scholar]
- Mulligan H. D., Mahony S. M., Ross J. A., Tisdale M. J. Weight loss in a murine cachexia model is not associated with the cytokines tumour necrosis factor-alpha or interleukin-6. Cancer Lett. 1992 Aug 31;65(3):239–243. doi: 10.1016/0304-3835(92)90238-q. [DOI] [PubMed] [Google Scholar]
- Soda K., Kawakami M., Kashii A., Miyata M. Manifestations of cancer cachexia induced by colon 26 adenocarcinoma are not fully ascribable to interleukin-6. Int J Cancer. 1995 Jul 28;62(3):332–336. doi: 10.1002/ijc.2910620317. [DOI] [PubMed] [Google Scholar]
- Strassmann G., Fong M., Kenney J. S., Jacob C. O. Evidence for the involvement of interleukin 6 in experimental cancer cachexia. J Clin Invest. 1992 May;89(5):1681–1684. doi: 10.1172/JCI115767. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tamura S., Ouchi K. F., Mori K., Endo M., Matsumoto T., Eda H., Tanaka Y., Ishitsuka H., Tokita H., Yamaguchi K. Involvement of human interleukin 6 in experimental cachexia induced by a human uterine cervical carcinoma xenograft. Clin Cancer Res. 1995 Nov;1(11):1353–1358. [PubMed] [Google Scholar]
- Tanaka Y., Eda H., Fujimoto K., Tanaka T., Ishikawa T., Ishitsuka H. Anticachectic activity of 5'-deoxy-5-fluorouridine in a murine tumor cachexia model, colon 26 adenocarcinoma. Cancer Res. 1990 Aug 1;50(15):4528–4532. [PubMed] [Google Scholar]
- Todorov P. T., Deacon M., Tisdale M. J. Structural analysis of a tumor-produced sulfated glycoprotein capable of initiating muscle protein degradation. J Biol Chem. 1997 May 9;272(19):12279–12288. doi: 10.1074/jbc.272.19.12279. [DOI] [PubMed] [Google Scholar]
- Todorov P. T., McDevitt T. M., Cariuk P., Coles B., Deacon M., Tisdale M. J. Induction of muscle protein degradation and weight loss by a tumor product. Cancer Res. 1996 Mar 15;56(6):1256–1261. [PubMed] [Google Scholar]
- Todorov P. T., McDevitt T. M., Meyer D. J., Ueyama H., Ohkubo I., Tisdale M. J. Purification and characterization of a tumor lipid-mobilizing factor. Cancer Res. 1998 Jun 1;58(11):2353–2358. [PubMed] [Google Scholar]
- Todorov P., Cariuk P., McDevitt T., Coles B., Fearon K., Tisdale M. Characterization of a cancer cachectic factor. Nature. 1996 Feb 22;379(6567):739–742. doi: 10.1038/379739a0. [DOI] [PubMed] [Google Scholar]
- Wigmore S. J., Ross J. A., Falconer J. S., Plester C. E., Tisdale M. J., Carter D. C., Fearon K. C. The effect of polyunsaturated fatty acids on the progress of cachexia in patients with pancreatic cancer. Nutrition. 1996 Jan;12(1 Suppl):S27–S30. doi: 10.1016/0899-9007(96)90014-3. [DOI] [PubMed] [Google Scholar]
- Yasumoto K., Mukaida N., Harada A., Kuno K., Akiyama M., Nakashima E., Fujioka N., Mai M., Kasahara T., Fujimoto-Ouchi K. Molecular analysis of the cytokine network involved in cachexia in colon 26 adenocarcinoma-bearing mice. Cancer Res. 1995 Feb 15;55(4):921–927. [PubMed] [Google Scholar]