Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 2000 Jun 2;83(1):63–68. doi: 10.1054/bjoc.2000.1279

The 121 amino acid isoform of vascular endothelial growth factor is more strongly tumorigenic than other splice variants in vivo

H-T Zhang 1, P A E Scott 2, L Morbidelli 3, S Peak 4, J Moore 1, H Turley 5, A L Harris 1, M Ziche 6, R Bicknell 1
PMCID: PMC2374542  PMID: 10883669

Abstract

Vascular endothelial growth factor (VEGF) is known to occur as at least six differentially spliced variants, giving rise to mature isoforms containing 121, 145, 165, 183, 189 and 206 amino acids. However, little is yet known concerning the in vivo activities of this differential splicing. Stably transfected MCF-7 breast carcinoma cells were constructed that secreted comparable amounts of the 121, 165 or 189 isoforms. Rabbit corneal angiogenesis assays showed the VEGF121 transfectant to have much greater angiogenic activity than the 165 or 189 expressing MCF-7 cells. While the VEGF121-expressing MCF-7 cells were reproducibly more tumorigenic than the control transfectants, this was not the case with the VEGF165- or VEGF189-expressing cells. More surprising was the observation that VEGF189 located to the nucleus, consistent with the presence of a highly conserved nuclear localization sequence in exon 6a that is expressed in VEGF189 but not 121 or 165. It was concluded that the VEGF121 isoform is both more angiogenic and tumorigenic than are the 165 and 189 isoforms. This is probably due to the ability of the 121 isoform, unlike the 165 and 189 isoforms, to freely diffuse from the cells producing it. © 2000 Cancer Research Campaign

Keywords: vascular endothelial growth factor, angiogenesis, tumorigenesis, differential splicing, nuclear localization

Full Text

The Full Text of this article is available as a PDF (171.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acland P., Dixon M., Peters G., Dickson C. Subcellular fate of the int-2 oncoprotein is determined by choice of initiation codon. Nature. 1990 Feb 15;343(6259):662–665. doi: 10.1038/343662a0. [DOI] [PubMed] [Google Scholar]
  2. Bader T., Weitzerbin J. Nuclear accumulation of interferon gamma. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):11831–11835. doi: 10.1073/pnas.91.25.11831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Carmeliet P., Ng Y. S., Nuyens D., Theilmeier G., Brusselmans K., Cornelissen I., Ehler E., Kakkar V. V., Stalmans I., Mattot V. Impaired myocardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Nat Med. 1999 May;5(5):495–502. doi: 10.1038/8379. [DOI] [PubMed] [Google Scholar]
  4. Cheung N., Wong M. P., Yuen S. T., Leung S. Y., Chung L. P. Tissue-specific expression pattern of vascular endothelial growth factor isoforms in the malignant transformation of lung and colon. Hum Pathol. 1998 Sep;29(9):910–914. doi: 10.1016/s0046-8177(98)90195-2. [DOI] [PubMed] [Google Scholar]
  5. Coltrini D., Gualandris A., Nelli E. E., Parolini S., Molinari-Tosatti M. P., Quarto N., Ziche M., Giavazzi R., Presta M. Growth advantage and vascularization induced by basic fibroblast growth factor overexpression in endometrial HEC-1-B cells: an export-dependent mechanism of action. Cancer Res. 1995 Oct 15;55(20):4729–4738. [PubMed] [Google Scholar]
  6. Gimbrone M. A., Jr, Cotran R. S., Leapman S. B., Folkman J. Tumor growth and neovascularization: an experimental model using the rabbit cornea. J Natl Cancer Inst. 1974 Feb;52(2):413–427. doi: 10.1093/jnci/52.2.413. [DOI] [PubMed] [Google Scholar]
  7. Gitay-Goren H., Cohen T., Tessler S., Soker S., Gengrinovitch S., Rockwell P., Klagsbrun M., Levi B. Z., Neufeld G. Selective binding of VEGF121 to one of the three vascular endothelial growth factor receptors of vascular endothelial cells. J Biol Chem. 1996 Mar 8;271(10):5519–5523. doi: 10.1074/jbc.271.10.5519. [DOI] [PubMed] [Google Scholar]
  8. Grützkau A., Krüger-Krasagakes S., Baumeister H., Schwarz C., Kögel H., Welker P., Lippert U., Henz B. M., Möller A. Synthesis, storage, and release of vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) by human mast cells: implications for the biological significance of VEGF206. Mol Biol Cell. 1998 Apr;9(4):875–884. doi: 10.1091/mbc.9.4.875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Houck K. A., Ferrara N., Winer J., Cachianes G., Li B., Leung D. W. The vascular endothelial growth factor family: identification of a fourth molecular species and characterization of alternative splicing of RNA. Mol Endocrinol. 1991 Dec;5(12):1806–1814. doi: 10.1210/mend-5-12-1806. [DOI] [PubMed] [Google Scholar]
  10. Houck K. A., Leung D. W., Rowland A. M., Winer J., Ferrara N. Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms. J Biol Chem. 1992 Dec 25;267(36):26031–26037. [PubMed] [Google Scholar]
  11. Keyt B. A., Berleau L. T., Nguyen H. V., Chen H., Heinsohn H., Vandlen R., Ferrara N. The carboxyl-terminal domain (111-165) of vascular endothelial growth factor is critical for its mitogenic potency. J Biol Chem. 1996 Mar 29;271(13):7788–7795. doi: 10.1074/jbc.271.13.7788. [DOI] [PubMed] [Google Scholar]
  12. Lei J., Jiang A., Pei D. Identification and characterization of a new splicing variant of vascular endothelial growth factor: VEGF183. Biochim Biophys Acta. 1998 Dec 22;1443(3):400–406. doi: 10.1016/s0167-4781(98)00240-1. [DOI] [PubMed] [Google Scholar]
  13. Neufeld G., Cohen T., Gengrinovitch S., Poltorak Z. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J. 1999 Jan;13(1):9–22. [PubMed] [Google Scholar]
  14. Park J. E., Keller G. A., Ferrara N. The vascular endothelial growth factor (VEGF) isoforms: differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF. Mol Biol Cell. 1993 Dec;4(12):1317–1326. doi: 10.1091/mbc.4.12.1317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Relf M., LeJeune S., Scott P. A., Fox S., Smith K., Leek R., Moghaddam A., Whitehouse R., Bicknell R., Harris A. L. Expression of the angiogenic factors vascular endothelial cell growth factor, acidic and basic fibroblast growth factor, tumor growth factor beta-1, platelet-derived endothelial cell growth factor, placenta growth factor, and pleiotrophin in human primary breast cancer and its relation to angiogenesis. Cancer Res. 1997 Mar 1;57(5):963–969. [PubMed] [Google Scholar]
  16. Robbins J., Dilworth S. M., Laskey R. A., Dingwall C. Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: identification of a class of bipartite nuclear targeting sequence. Cell. 1991 Feb 8;64(3):615–623. doi: 10.1016/0092-8674(91)90245-t. [DOI] [PubMed] [Google Scholar]
  17. Siemeister G., Schnurr B., Mohrs K., Schächtele C., Marmé D., Martiny-Baron G. Expression of biologically active isoforms of the tumor angiogenesis factor VEGF in Escherichia coli. Biochem Biophys Res Commun. 1996 May 15;222(2):249–255. doi: 10.1006/bbrc.1996.0730. [DOI] [PubMed] [Google Scholar]
  18. Smith K., Houlbrook S., Greenall M., Carmichael J., Harris A. L. Topoisomerase II alpha co-amplification with erbB2 in human primary breast cancer and breast cancer cell lines: relationship to m-AMSA and mitoxantrone sensitivity. Oncogene. 1993 Apr;8(4):933–938. [PubMed] [Google Scholar]
  19. Tischer E., Mitchell R., Hartman T., Silva M., Gospodarowicz D., Fiddes J. C., Abraham J. A. The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing. J Biol Chem. 1991 Jun 25;266(18):11947–11954. [PubMed] [Google Scholar]
  20. Turley H., Scott P. A., Watts V. M., Bicknell R., Harris A. L., Gatter K. C. Expression of VEGF in routinely fixed material using a new monoclonal antibody VG1. J Pathol. 1998 Nov;186(3):313–318. doi: 10.1002/(SICI)1096-9896(1998110)186:3<313::AID-PATH188>3.0.CO;2-X. [DOI] [PubMed] [Google Scholar]
  21. Zhang H. T., Craft P., Scott P. A., Ziche M., Weich H. A., Harris A. L., Bicknell R. Enhancement of tumor growth and vascular density by transfection of vascular endothelial cell growth factor into MCF-7 human breast carcinoma cells. J Natl Cancer Inst. 1995 Feb 1;87(3):213–219. doi: 10.1093/jnci/87.3.213. [DOI] [PubMed] [Google Scholar]
  22. Ziche M., Morbidelli L., Choudhuri R., Zhang H. T., Donnini S., Granger H. J., Bicknell R. Nitric oxide synthase lies downstream from vascular endothelial growth factor-induced but not basic fibroblast growth factor-induced angiogenesis. J Clin Invest. 1997 Jun 1;99(11):2625–2634. doi: 10.1172/JCI119451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ziche M., Morbidelli L., Masini E., Amerini S., Granger H. J., Maggi C. A., Geppetti P., Ledda F. Nitric oxide mediates angiogenesis in vivo and endothelial cell growth and migration in vitro promoted by substance P. J Clin Invest. 1994 Nov;94(5):2036–2044. doi: 10.1172/JCI117557. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES