Abstract
Genetic polymorphism of the carcinogen metabolizing enzyme N -acetyl transferase 2 (NAT2) may influence susceptibility to bladder cancers related to smoking or to occupational exposure to arylamine carcinogens. This article reviews the results of 21 published case–control studies of NAT2 polymorphism and bladder-cancer risk, with a total of 2700 cases and 3426 controls. The published evidence suggests that NAT2 slow acetylator phenotype or genotype may be associated with a small increase in bladder cancer risk. However, given the possibility of selective publication of results from studies that found an excess risk, the current evidence is not sufficient to conclude that there is a real increase in risk. Only five of the 21 studies reported results separately for the effect of NAT2 on bladder cancer risk in smokers and non-smokers. Although the results suggest that the effect may be greater in smokers than in non-smokers, the possibility of publication bias makes these results difficult to interpret. There was insufficient evidence to assess the joint effect of NAT2 and occupational exposure to arylamines on bladder cancer risk. Even if estimates of the effect of NAT2 from published data are correct, studies with around 3000–5000 cases will be needed to confirm them. © 2000 Cancer Research Campaign
Keywords: bladder cancer, NAT2, genetic polymorphism, smoking, arylamines, gene–environment interaction
Full Text
The Full Text of this article is available as a PDF (90.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bicho M. P., Breitenfeld L., Carvalho A. A., Manso C. F. Acetylation phenotypes in patients with bladder carcinoma. Ann Genet. 1988;31(3):167–171. [PubMed] [Google Scholar]
- Brockmöller J., Cascorbi I., Kerb R., Roots I. Combined analysis of inherited polymorphisms in arylamine N-acetyltransferase 2, glutathione S-transferases M1 and T1, microsomal epoxide hydrolase, and cytochrome P450 enzymes as modulators of bladder cancer risk. Cancer Res. 1996 Sep 1;56(17):3915–3925. [PubMed] [Google Scholar]
- CASE R. A., HOSKER M. E., McDONALD D. B., PEARSON J. T. Tumours of the urinary bladder in workmen engaged in the manufacture and use of certain dyestuff intermediates in the British chemical industry. I. The role of aniline, benzidine, alpha-naphthylamine, and beta-naphthylamine. Br J Ind Med. 1954 Apr;11(2):75–104. doi: 10.1136/oem.11.2.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cartwright R. A. Genetic association with bladder cancer. Br Med J. 1979 Sep 29;2(6193):798–798. doi: 10.1136/bmj.2.6193.798-b. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cartwright R. A., Glashan R. W., Rogers H. J., Ahmad R. A., Barham-Hall D., Higgins E., Kahn M. A. Role of N-acetyltransferase phenotypes in bladder carcinogenesis: a pharmacogenetic epidemiological approach to bladder cancer. Lancet. 1982 Oct 16;2(8303):842–845. doi: 10.1016/s0140-6736(82)90810-8. [DOI] [PubMed] [Google Scholar]
- Cascorbi I., Drakoulis N., Brockmöller J., Maurer A., Sperling K., Roots I. Arylamine N-acetyltransferase (NAT2) mutations and their allelic linkage in unrelated Caucasian individuals: correlation with phenotypic activity. Am J Hum Genet. 1995 Sep;57(3):581–592. [PMC free article] [PubMed] [Google Scholar]
- Cuzick J. Interaction, subgroup analysis and sample size. IARC Sci Publ. 1999;(148):109–121. [PubMed] [Google Scholar]
- Dewan A., Chattopadhyay P., Kulkarni P. K. N-acetyltransferase activity--a susceptibility factor in human bladder carcinogenesis. Indian J Cancer. 1995 Mar;32(1):15–19. [PubMed] [Google Scholar]
- Egger M., Schneider M., Davey Smith G. Spurious precision? Meta-analysis of observational studies. BMJ. 1998 Jan 10;316(7125):140–144. doi: 10.1136/bmj.316.7125.140. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Evans D. A., Eze L. C., Whibley E. J. The association of the slow acetylator phenotype with bladder cancer. J Med Genet. 1983 Oct;20(5):330–333. doi: 10.1136/jmg.20.5.330. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grant D. M., Hughes N. C., Janezic S. A., Goodfellow G. H., Chen H. J., Gaedigk A., Yu V. L., Grewal R. Human acetyltransferase polymorphisms. Mutat Res. 1997 May 12;376(1-2):61–70. doi: 10.1016/s0027-5107(97)00026-2. [DOI] [PubMed] [Google Scholar]
- Hanke J., Krajewska B. Acetylation phenotypes and bladder cancer. J Occup Med. 1990 Sep;32(9):917–918. doi: 10.1097/00043764-199009000-00032. [DOI] [PubMed] [Google Scholar]
- Hanssen H. P., Agarwal D. P., Goedde H. W., Bucher H., Huland H., Brachmann W., Ovenbeck R. Association of N-acetyltransferase polymorphism and environmental factors with bladder carcinogenesis. Study in a north German population. Eur Urol. 1985;11(4):263–266. doi: 10.1159/000472511. [DOI] [PubMed] [Google Scholar]
- Hayes R. B., Bi W., Rothman N., Broly F., Caporaso N., Feng P., You X., Yin S., Woosley R. L., Meyer U. A. N-acetylation phenotype and genotype and risk of bladder cancer in benzidine-exposed workers. Carcinogenesis. 1993 Apr;14(4):675–678. doi: 10.1093/carcin/14.4.675. [DOI] [PubMed] [Google Scholar]
- Hein D. W. Acetylator genotype and arylamine-induced carcinogenesis. Biochim Biophys Acta. 1988 Aug 3;948(1):37–66. doi: 10.1016/0304-419x(88)90004-2. [DOI] [PubMed] [Google Scholar]
- Hirvonen A. Polymorphic NATs and cancer predisposition. IARC Sci Publ. 1999;(148):251–270. [PubMed] [Google Scholar]
- Horai Y., Fujita K., Ishizaki T. Genetically determined N-acetylation and oxidation capacities in Japanese patients with non-occupational urinary bladder cancer. Eur J Clin Pharmacol. 1989;37(6):581–587. doi: 10.1007/BF00562549. [DOI] [PubMed] [Google Scholar]
- Hwang S. J., Beaty T. H., Liang K. Y., Coresh J., Khoury M. J. Minimum sample size estimation to detect gene-environment interaction in case-control designs. Am J Epidemiol. 1994 Dec 1;140(11):1029–1037. doi: 10.1093/oxfordjournals.aje.a117193. [DOI] [PubMed] [Google Scholar]
- Ishizu S., Hashida C., Hanaoka T., Maeda K., Ohishi Y. N-acetyltransferase activity in the urine in Japanese subjects: comparison in healthy persons and bladder cancer patients. Jpn J Cancer Res. 1995 Dec;86(12):1179–1181. doi: 10.1111/j.1349-7006.1995.tb03312.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaisary A., Smith P., Jaczq E., McAllister C. B., Wilkinson G. R., Ray W. A., Branch R. A. Genetic predisposition to bladder cancer: ability to hydroxylate debrisoquine and mephenytoin as risk factors. Cancer Res. 1987 Oct 15;47(20):5488–5493. [PubMed] [Google Scholar]
- Kantor A. F., Hartge P., Hoover R. N., Fraumeni J. F., Jr Familial and environmental interactions in bladder cancer risk. Int J Cancer. 1985 Jun 15;35(6):703–706. doi: 10.1002/ijc.2910350602. [DOI] [PubMed] [Google Scholar]
- Karakaya A. E., Cok I., Sardas S., Gögüs O., Sardas O. S. N-Acetyltransferase phenotype of patients with bladder cancer. Hum Toxicol. 1986 Sep;5(5):333–335. doi: 10.1177/096032718600500507. [DOI] [PubMed] [Google Scholar]
- Kiemeney L. A., Moret N. C., Witjes J. A., Schoenberg M. P., Tulinius H. Familial transitional cell carcinoma among the population of Iceland. J Urol. 1997 May;157(5):1649–1651. [PubMed] [Google Scholar]
- Knowles M. A. Molecular genetics of bladder cancer: pathways of development and progression. Cancer Surv. 1998;31:49–76. [PubMed] [Google Scholar]
- Ladero J. M., Kwok C. K., Jara C., Fernandez L., Silmi A. M., Tapia D., Uson A. C. Hepatic acetylator phenotype in bladder cancer patients. Ann Clin Res. 1985;17(3):96–99. [PubMed] [Google Scholar]
- Le Marchand L., Sivaraman L., Pierce L., Seifried A., Lum A., Wilkens L. R., Lau A. F. Associations of CYP1A1, GSTM1, and CYP2E1 polymorphisms with lung cancer suggest cell type specificities to tobacco carcinogens. Cancer Res. 1998 Nov 1;58(21):4858–4863. [PubMed] [Google Scholar]
- Lee S. W., Jang I. J., Shin S. G., Lee K. H., Yim D. S., Kim S. W., Oh S. J., Lee S. H. CYP1A2 activity as a risk factor for bladder cancer. J Korean Med Sci. 1994 Dec;9(6):482–489. doi: 10.3346/jkms.1994.9.6.482. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lin H. J., Han C. Y., Lin B. K., Hardy S. Ethnic distribution of slow acetylator mutations in the polymorphic N-acetyltransferase (NAT2) gene. Pharmacogenetics. 1994 Jun;4(3):125–134. doi: 10.1097/00008571-199406000-00003. [DOI] [PubMed] [Google Scholar]
- Lower G. M., Jr, Nilsson T., Nelson C. E., Wolf H., Gamsky T. E., Bryan G. T. N-acetyltransferase phenotype and risk in urinary bladder cancer: approaches in molecular epidemiology. Preliminary results in Sweden and Denmark. Environ Health Perspect. 1979 Apr;29:71–79. doi: 10.1289/ehp.792971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller M. E., Cosgriff J. M. Acetylator phenotype in human bladder cancer. J Urol. 1983 Jul;130(1):65–66. doi: 10.1016/s0022-5347(17)50956-8. [DOI] [PubMed] [Google Scholar]
- Mommsen S., Barfod N. M., Aagaard J. N-Acetyltransferase phenotypes in the urinary bladder carcinogenesis of a low-risk population. Carcinogenesis. 1985 Feb;6(2):199–201. doi: 10.1093/carcin/6.2.199. [DOI] [PubMed] [Google Scholar]
- Okkels H., Sigsgaard T., Wolf H., Autrup H. Arylamine N-acetyltransferase 1 (NAT1) and 2 (NAT2) polymorphisms in susceptibility to bladder cancer: the influence of smoking. Cancer Epidemiol Biomarkers Prev. 1997 Apr;6(4):225–231. [PubMed] [Google Scholar]
- Oxman A. D., Guyatt G. H. A consumer's guide to subgroup analyses. Ann Intern Med. 1992 Jan 1;116(1):78–84. doi: 10.7326/0003-4819-116-1-78. [DOI] [PubMed] [Google Scholar]
- Peluso M., Airoldi L., Armelle M., Martone T., Coda R., Malaveille C., Giacomelli G., Terrone C., Casetta G., Vineis P. White blood cell DNA adducts, smoking, and NAT2 and GSTM1 genotypes in bladder cancer: a case-control study. Cancer Epidemiol Biomarkers Prev. 1998 Apr;7(4):341–346. [PubMed] [Google Scholar]
- Probert J. L., Persad R. A., Greenwood R. P., Gillatt D. A., Smith P. J. Epidemiology of transitional cell carcinoma of the bladder: profile of an urban population in the south-west of England. Br J Urol. 1998 Nov;82(5):660–666. doi: 10.1046/j.1464-410x.1998.00818.x. [DOI] [PubMed] [Google Scholar]
- Risch A., Wallace D. M., Bathers S., Sim E. Slow N-acetylation genotype is a susceptibility factor in occupational and smoking related bladder cancer. Hum Mol Genet. 1995 Feb;4(2):231–236. doi: 10.1093/hmg/4.2.231. [DOI] [PubMed] [Google Scholar]
- Rothman N., Garcia-Closas M., Stewart W. T., Lubin J. The impact of misclassification in case-control studies of gene-environment interactions. IARC Sci Publ. 1999;(148):89–96. [PubMed] [Google Scholar]
- Smith C. A., Wadelius M., Gough A. C., Harrison D. J., Wolf C. R., Rane A. A simplified assay for the arylamine N-acetyltransferase 2 polymorphism validated by phenotyping with isoniazid. J Med Genet. 1997 Sep;34(9):758–760. doi: 10.1136/jmg.34.9.758. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sone M. [Determination of the N-acetyltransferase phenotype in urothelial cancer patients and healthy controls]. Hinyokika Kiyo. 1986 Aug;32(8):1085–1092. [PubMed] [Google Scholar]
- Su H. J., Guo Y. L., Lai M. D., Huang J. D., Cheng Y., Christiani D. C. The NAT2* slow acetylator genotype is associated with bladder cancer in Taiwanese, but not in the Black Foot Disease endemic area population. Pharmacogenetics. 1998 Apr;8(2):187–190. doi: 10.1097/00008571-199804000-00011. [DOI] [PubMed] [Google Scholar]
- Sørlie T., Martel-Planche G., Hainaut P., Lewalter J., Holm R., Børresen-Dale A. L., Montesano R. Analysis of p53, p16MTS, p21WAF1 and H-ras in archived bladder tumours from workers exposed to aromatic amines. Br J Cancer. 1998 May;77(10):1573–1579. doi: 10.1038/bjc.1998.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor J. A., Umbach D. M., Stephens E., Castranio T., Paulson D., Robertson C., Mohler J. L., Bell D. A. The role of N-acetylation polymorphisms in smoking-associated bladder cancer: evidence of a gene-gene-exposure three-way interaction. Cancer Res. 1998 Aug 15;58(16):3603–3610. [PubMed] [Google Scholar]
- Vatsis K. P., Weber W. W., Bell D. A., Dupret J. M., Evans D. A., Grant D. M., Hein D. W., Lin H. J., Meyer U. A., Relling M. V. Nomenclature for N-acetyltransferases. Pharmacogenetics. 1995 Feb;5(1):1–17. doi: 10.1097/00008571-199502000-00001. [DOI] [PubMed] [Google Scholar]
- Vineis P. Epidemiological models of carcinogenesis: the example of bladder cancer. Cancer Epidemiol Biomarkers Prev. 1992 Jan-Feb;1(2):149–153. [PubMed] [Google Scholar]
- Whiteman D. C., Parsons P. G., Green A. C. p53 expression and risk factors for cutaneous melanoma: a case-control study. Int J Cancer. 1998 Sep 11;77(6):843–848. doi: 10.1002/(sici)1097-0215(19980911)77:6<843::aid-ijc8>3.0.co;2-u. [DOI] [PubMed] [Google Scholar]
- Woodhouse K. W., Adams P. C., Clothier A., Mucklow J. C., Rawlins M. D. N-acetylation phenotype in bladder cancer. Hum Toxicol. 1982 Oct;1(4):443–445. doi: 10.1177/096032718200100411. [DOI] [PubMed] [Google Scholar]
- Woolhouse N. M., Qureshi M. M., Bastaki S. M., Patel M., Abdulrazzaq Y., Bayoumi R. A. Polymorphic N-acetyltransferase (NAT2) genotyping of Emiratis. Pharmacogenetics. 1997 Feb;7(1):73–82. doi: 10.1097/00008571-199702000-00010. [DOI] [PubMed] [Google Scholar]
- Xie H. G., Xu Z. H., Ou-Yang D. S., Shu Y., Yang D. L., Wang J. S., Yan X. D., Huang S. L., Wang W., Zhou H. H. Meta-analysis of phenotype and genotype of NAT2 deficiency in Chinese populations. Pharmacogenetics. 1997 Dec;7(6):503–514. doi: 10.1097/00008571-199712000-00009. [DOI] [PubMed] [Google Scholar]
- d'Errico A., Malats N., Vineis P., Boffetta P. Review of studies of selected metabolic polymorphisms and cancer. IARC Sci Publ. 1999;(148):323–393. [PubMed] [Google Scholar]