Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 2000 Jul 3;83(3):360–365. doi: 10.1054/bjoc.2000.1261

Endothelin-1 from prostate cancer cells is enhanced by bone contact which blocks osteoclastic bone resorption

J W Chiao 1, B S Moonga 1, Y M Yang 1, R Kancherla 1, A Mittelman 1, J R Wu-Wong 2, T Ahmed 1
PMCID: PMC2374574  PMID: 10917552

Abstract

The causes for the propensity of metastasized prostate cancer cells to grow in bone and to induce osteoblastic lesions remain unresolved. Co-culture of human prostate cancer cell lines with bone slices was determined to increase the level of endothelin-1 (ET-1) mRNA and its production. ET-1 is an ejaculate protein that also stimulates osteoblasts. Osteoclastic bone resorption was significantly blocked by the presence of androgen-independent prostate cancer cells in a dose-dependent manner as that of synthetic ET-1. The inhibition could be neutralized by specific ET-1 antibody, indicating the association of prostate cancer-derived ET-1 with inhibition of bone resorption. The combined ET-1 activity on osteoclasts and osteoblasts disrupts bone remodelling. ET-1 production is also elevated in the presence of prostate-specific antigen (PSA). ET-1 in turn enhances DNA synthesis of prostate cancer cells. Interactions among cancer cells, bone, ET-1 and PSA may be critical in cancer growth and lesions in bone. © 2000 Cancer Research Campaign

Keywords: prostate cancer, endothelin-1, bone lesions

Full Text

The Full Text of this article is available as a PDF (75.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abolhassani M., Chiao J. W. Antiproliferative effect of a prostatic cell-derived activity on the human androgen-dependent prostatic carcinoma cell line LNCaP. J Interferon Cytokine Res. 1995 Feb;15(2):179–185. doi: 10.1089/jir.1995.15.179. [DOI] [PubMed] [Google Scholar]
  2. Alam A. S., Gallagher A., Shankar V., Ghatei M. A., Datta H. K., Huang C. L., Moonga B. S., Chambers T. J., Bloom S. R., Zaidi M. Endothelin inhibits osteoclastic bone resorption by a direct effect on cell motility: implications for the vascular control of bone resorption. Endocrinology. 1992 Jun;130(6):3617–3624. doi: 10.1210/endo.130.6.1597159. [DOI] [PubMed] [Google Scholar]
  3. Bagnato A., Salani D., Di Castro V., Wu-Wong J. R., Tecce R., Nicotra M. R., Venuti A., Natali P. G. Expression of endothelin 1 and endothelin A receptor in ovarian carcinoma: evidence for an autocrine role in tumor growth. Cancer Res. 1999 Feb 1;59(3):720–727. [PubMed] [Google Scholar]
  4. Boyde A., Ali N. N., Jones S. J. Resorption of dentine by isolated osteoclasts in vitro. Br Dent J. 1984 Mar 24;156(6):216–220. doi: 10.1038/sj.bdj.4805313. [DOI] [PubMed] [Google Scholar]
  5. Casey M. L., Byrd W., MacDonald P. C. Massive amounts of immunoreactive endothelin in human seminal fluid. J Clin Endocrinol Metab. 1992 Jan;74(1):223–225. doi: 10.1210/jcem.74.1.1727824. [DOI] [PubMed] [Google Scholar]
  6. Chambers T. J., Revell P. A., Fuller K., Athanasou N. A. Resorption of bone by isolated rabbit osteoclasts. J Cell Sci. 1984 Mar;66:383–399. doi: 10.1242/jcs.66.1.383. [DOI] [PubMed] [Google Scholar]
  7. Charhon S. A., Chapuy M. C., Delvin E. E., Valentin-Opran A., Edouard C. M., Meunier P. J. Histomorphometric analysis of sclerotic bone metastases from prostatic carcinoma special reference to osteomalacia. Cancer. 1983 Mar 1;51(5):918–924. doi: 10.1002/1097-0142(19830301)51:5<918::aid-cncr2820510526>3.0.co;2-j. [DOI] [PubMed] [Google Scholar]
  8. Dempster D. W., Murrills R. J., Horbert W. R., Arnett T. R. Biological activity of chicken calcitonin: effects on neonatal rat and embryonic chick osteoclasts. J Bone Miner Res. 1987 Oct;2(5):443–448. doi: 10.1002/jbmr.5650020512. [DOI] [PubMed] [Google Scholar]
  9. Horoszewicz J. S., Leong S. S., Kawinski E., Karr J. P., Rosenthal H., Chu T. M., Mirand E. A., Murphy G. P. LNCaP model of human prostatic carcinoma. Cancer Res. 1983 Apr;43(4):1809–1818. [PubMed] [Google Scholar]
  10. Koutsilieris M., Rabbani S. A., Bennett H. P., Goltzman D. Characteristics of prostate-derived growth factors for cells of the osteoblast phenotype. J Clin Invest. 1987 Oct;80(4):941–946. doi: 10.1172/JCI113186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Martínez J., Silva S., Santibáez J. F. Prostate-derived soluble factors block osteoblast differentiation in culture. J Cell Biochem. 1996 Apr;61(1):18–25. doi: 10.1002/(sici)1097-4644(19960401)61:1<18::aid-jcb3>3.0.co;2-5. [DOI] [PubMed] [Google Scholar]
  12. Moonga B. S., Chiao J. W. Detection of an inhibiting activity for osteoclast bone resorption from human prostatic cancer cells. Cancer Lett. 1998 Jan 16;123(1):15–20. doi: 10.1016/s0304-3835(97)00364-9. [DOI] [PubMed] [Google Scholar]
  13. Muraki J., Addonizio J. C., Choudhury M. S., Fischer J., Eshghi M., Davidian M. M., Shapiro L. R., Wilmot P. L., Nagamatsu G. R., Chiao J. W. Establishment of new human prostatic cancer cell line (JCA-1). Urology. 1990 Jul;36(1):79–84. doi: 10.1016/0090-4295(90)80319-i. [DOI] [PubMed] [Google Scholar]
  14. Nelson J. B., Hedican S. P., George D. J., Reddi A. H., Piantadosi S., Eisenberger M. A., Simons J. W. Identification of endothelin-1 in the pathophysiology of metastatic adenocarcinoma of the prostate. Nat Med. 1995 Sep;1(9):944–949. doi: 10.1038/nm0995-944. [DOI] [PubMed] [Google Scholar]
  15. Nelson J. B., Nguyen S. H., Wu-Wong J. R., Opgenorth T. J., Dixon D. B., Chung L. W., Inoue N. New bone formation in an osteoblastic tumor model is increased by endothelin-1 overexpression and decreased by endothelin A receptor blockade. Urology. 1999 May;53(5):1063–1069. doi: 10.1016/s0090-4295(98)00658-x. [DOI] [PubMed] [Google Scholar]
  16. Rabbani S. A., Desjardins J., Bell A. W., Banville D., Mazar A., Henkin J., Goltzman D. An amino-terminal fragment of urokinase isolated from a prostate cancer cell line (PC-3) is mitogenic for osteoblast-like cells. Biochem Biophys Res Commun. 1990 Dec 31;173(3):1058–1064. doi: 10.1016/s0006-291x(05)80893-9. [DOI] [PubMed] [Google Scholar]
  17. Raff T., van der Giet M., Endemann D., Wiederholt T., Paul M. Design and testing of beta-actin primers for RT-PCR that do not co-amplify processed pseudogenes. Biotechniques. 1997 Sep;23(3):456–460. doi: 10.2144/97233st02. [DOI] [PubMed] [Google Scholar]
  18. Santibáez J. F., Silva S., Martínez J. Soluble factors produced by PC-3 prostate cells decrease collagen content and mineralisation rate in fetal rat osteoblasts in culture. Br J Cancer. 1996 Aug;74(3):418–422. doi: 10.1038/bjc.1996.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Shioide M., Noda M. Endothelin modulates osteopontin and osteocalcin messenger ribonucleic acid expression in rat osteoblastic osteosarcoma cells. J Cell Biochem. 1993 Oct;53(2):176–180. doi: 10.1002/jcb.240530211. [DOI] [PubMed] [Google Scholar]
  20. Yanagisawa M. The endothelin system. A new target for therapeutic intervention. Circulation. 1994 Mar;89(3):1320–1322. doi: 10.1161/01.cir.89.3.1320. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES