Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 2000 Jul 3;83(3):354–359. doi: 10.1054/bjoc.2000.1266

Hypoxia-induced treatment failure in advanced squamous cell carcinoma of the uterine cervix is primarily due to hypoxia-induced radiation resistance rather than hypoxia-induced metastasis

E K Rofstad 1, K Sundfør 2, H Lyng 1, C G Tropé 2
PMCID: PMC2374576  PMID: 10917551

Abstract

Poor outcome of treatment in advanced cervix carcinoma has been shown to be associated with poor oxygenation of the primary tumour. Hypoxia may cause radiation resistance and promote lymph-node metastasis. The purpose of the study reported here was to investigate whether hypoxia-induced treatment failure in advanced cervix carcinoma is primarily a result of hypoxia-induced radiation resistance or the presence of hypoxia-induced lymph-node metastases at the start of treatment. Thirty-two patients with squamous cell carcinoma of the uterine cervix were included in the study. Radiation therapy was given with curative intent as combined external irradiation and endocavitary brachytherapy. The oxygenation status of the primary tumour was measured prior to treatment using the Eppendorf p O 2 Histograph. Pelvic and para-aortal lymph-node metastases were detected by magnetic resonance imaging at the time of initial diagnosis. The primary tumours of the patients with metastases (n = 18) were significantly more poorly oxygenated than those of the patients without metastases (n = 14). Multivariate Cox regression analyses involving biological and clinical parameters identified the tumour subvolume having p O 2 values below 5mmHg (HSV (p O 2< 5mmHg) as the only significant, independent prognostic factor for locoregional control, disease-free survival and overall survival. The probabillities of locoregional control, disease-free survival and overall survival were significantly lower for the patients with HSV (p O 2< 5 mmHg) above the median value than for those with HSV (p O 2< 5 mmHg) below the median value. On the other hand, the outcome of treatment was not significantly different for the patients with metastases and the patients without metastases at the start of treatment, irrespective of clinical end-point. Consequently, treatment failure was primarily a result of hypoxia-induced radiation resistance rather than hypoxia-induced lymph-node metastasis, suggesting that novel treatment strategies aiming at improving tumour oxygenation or enhancing the radiation sensitivity of hypoxic tumour cells may prove beneficial in attempts to improve the radiation therapy of advanced cervix carcinoma. © 2000 Cancer Research Campaign

Keywords: cervix carcinoma, hypoxia, oxygen tension, metastasis, radiation resistance

Full Text

The Full Text of this article is available as a PDF (70.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brizel D. M., Rosner G. L., Prosnitz L. R., Dewhirst M. W. Patterns and variability of tumor oxygenation in human soft tissue sarcomas, cervical carcinomas, and lymph node metastases. Int J Radiat Oncol Biol Phys. 1995 Jul 15;32(4):1121–1125. doi: 10.1016/0360-3016(95)00106-9. [DOI] [PubMed] [Google Scholar]
  2. Brown J. M., Giaccia A. J. The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res. 1998 Apr 1;58(7):1408–1416. [PubMed] [Google Scholar]
  3. Bush R. S. The significance of anemia in clinical radiation therapy. Int J Radiat Oncol Biol Phys. 1986 Nov;12(11):2047–2050. doi: 10.1016/0360-3016(86)90146-x. [DOI] [PubMed] [Google Scholar]
  4. Coleman C. N. Hypoxia in tumors: a paradigm for the approach to biochemical and physiologic heterogeneity. J Natl Cancer Inst. 1988 May 4;80(5):310–317. doi: 10.1093/jnci/80.5.310. [DOI] [PubMed] [Google Scholar]
  5. Cooper R. A., West C. M., Logue J. P., Davidson S. E., Miller A., Roberts S., Statford I. J., Honess D. J., Hunter R. D. Changes in oxygenation during radiotherapy in carcinoma of the cervix. Int J Radiat Oncol Biol Phys. 1999 Aug 1;45(1):119–126. doi: 10.1016/s0360-3016(99)00093-0. [DOI] [PubMed] [Google Scholar]
  6. Dunst J., Hänsgen G., Lautenschläger C., Füchsel G., Becker A. Oxygenation of cervical cancers during radiotherapy and radiotherapy + cis-retinoic acid/interferon. Int J Radiat Oncol Biol Phys. 1999 Jan 15;43(2):367–373. doi: 10.1016/s0360-3016(98)00361-7. [DOI] [PubMed] [Google Scholar]
  7. Fagundes H., Perez C. A., Grigsby P. W., Lockett M. A. Distant metastases after irradiation alone in carcinoma of the uterine cervix. Int J Radiat Oncol Biol Phys. 1992;24(2):197–204. doi: 10.1016/0360-3016(92)90671-4. [DOI] [PubMed] [Google Scholar]
  8. Fyles A. W., Milosevic M., Pintilie M., Hill R. P. Cervix cancer oxygenation measured following external radiation therapy. Int J Radiat Oncol Biol Phys. 1998 Nov 1;42(4):751–753. doi: 10.1016/s0360-3016(98)00307-1. [DOI] [PubMed] [Google Scholar]
  9. Fyles A. W., Milosevic M., Wong R., Kavanagh M. C., Pintilie M., Sun A., Chapman W., Levin W., Manchul L., Keane T. J. Oxygenation predicts radiation response and survival in patients with cervix cancer. Radiother Oncol. 1998 Aug;48(2):149–156. doi: 10.1016/s0167-8140(98)00044-9. [DOI] [PubMed] [Google Scholar]
  10. Hill R. P. Tumor progression: potential role of unstable genomic changes. Cancer Metastasis Rev. 1990 Sep;9(2):137–147. doi: 10.1007/BF00046340. [DOI] [PubMed] [Google Scholar]
  11. Hockel M., Schlenger K., Aral B., Mitze M., Schaffer U., Vaupel P. Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res. 1996 Oct 1;56(19):4509–4515. [PubMed] [Google Scholar]
  12. Horsman M. R. Nicotinamide and other benzamide analogs as agents for overcoming hypoxic cell radiation resistance in tumours. A review. Acta Oncol. 1995;34(5):571–587. doi: 10.3109/02841869509094031. [DOI] [PubMed] [Google Scholar]
  13. Höckel M., Knoop C., Schlenger K., Vorndran B., Baussmann E., Mitze M., Knapstein P. G., Vaupel P. Intratumoral pO2 predicts survival in advanced cancer of the uterine cervix. Radiother Oncol. 1993 Jan;26(1):45–50. doi: 10.1016/0167-8140(93)90025-4. [DOI] [PubMed] [Google Scholar]
  14. Höckel M., Schlenger K., Knoop C., Vaupel P. Oxygenation of carcinomas of the uterine cervix: evaluation by computerized O2 tension measurements. Cancer Res. 1991 Nov 15;51(22):6098–6102. [PubMed] [Google Scholar]
  15. Jager G. J., Barentsz J. O., Oosterhof G. O., Witjes J. A., Ruijs S. J. Pelvic adenopathy in prostatic and urinary bladder carcinoma: MR imaging with a three-dimensional TI-weighted magnetization-prepared-rapid gradient-echo sequence. AJR Am J Roentgenol. 1996 Dec;167(6):1503–1507. doi: 10.2214/ajr.167.6.8956585. [DOI] [PubMed] [Google Scholar]
  16. Leibel S. A., Fuks Z. Is local failure a cause of or a marker for metastatic dissemination in carcinoma of the uterine cervix? Int J Radiat Oncol Biol Phys. 1992;24(2):377–387. doi: 10.1016/0360-3016(92)90694-d. [DOI] [PubMed] [Google Scholar]
  17. Overgaard J., Bentzen S. M., Kolstad P., Kjoerstad K., Davy M., Bertelsen K., Mäntyla M., Frankendal B., Skryten A., Löftquist I. Misonidazole combined with radiotherapy in the treatment of carcinoma of the uterine cervix. Int J Radiat Oncol Biol Phys. 1989 Apr;16(4):1069–1072. doi: 10.1016/0360-3016(89)90918-8. [DOI] [PubMed] [Google Scholar]
  18. Overgaard J. Clinical evaluation of nitroimidazoles as modifiers of hypoxia in solid tumors. Oncol Res. 1994;6(10-11):509–518. [PubMed] [Google Scholar]
  19. Rofstad E. K., Danielsen T. Hypoxia-induced metastasis of human melanoma cells: involvement of vascular endothelial growth factor-mediated angiogenesis. Br J Cancer. 1999 Aug;80(11):1697–1707. doi: 10.1038/sj.bjc.6690586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rofstad E. K. Microenvironment-induced cancer metastasis. Int J Radiat Biol. 2000 May;76(5):589–605. doi: 10.1080/095530000138259. [DOI] [PubMed] [Google Scholar]
  21. Schwickert G., Walenta S., Sundfør K., Rofstad E. K., Mueller-Klieser W. Correlation of high lactate levels in human cervical cancer with incidence of metastasis. Cancer Res. 1995 Nov 1;55(21):4757–4759. [PubMed] [Google Scholar]
  22. Stadler P., Becker A., Feldmann H. J., Hänsgen G., Dunst J., Würschmidt F., Molls M. Influence of the hypoxic subvolume on the survival of patients with head and neck cancer. Int J Radiat Oncol Biol Phys. 1999 Jul 1;44(4):749–754. doi: 10.1016/s0360-3016(99)00115-7. [DOI] [PubMed] [Google Scholar]
  23. Stone H. B., Brown J. M., Phillips T. L., Sutherland R. M. Oxygen in human tumors: correlations between methods of measurement and response to therapy. Summary of a workshop held November 19-20, 1992, at the National Cancer Institute, Bethesda, Maryland. Radiat Res. 1993 Dec;136(3):422–434. [PubMed] [Google Scholar]
  24. Sundfør K., Lyng H., Kongsgård U. L., Tropé C., Rofstad E. K. Polarographic measurement of pO2 in cervix carcinoma. Gynecol Oncol. 1997 Feb;64(2):230–236. doi: 10.1006/gyno.1996.4571. [DOI] [PubMed] [Google Scholar]
  25. Sundfør K., Lyng H., Rofstad E. K. Tumour hypoxia and vascular density as predictors of metastasis in squamous cell carcinoma of the uterine cervix. Br J Cancer. 1998 Sep;78(6):822–827. doi: 10.1038/bjc.1998.586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sundfør K., Lyng H., Tropé C. G., Rofstad E. K. Treatment outcome in advanced squamous cell carcinoma of the uterine cervix: relationships to pretreatment tumor oxygenation and vascularization. Radiother Oncol. 2000 Feb;54(2):101–107. doi: 10.1016/s0167-8140(99)00175-9. [DOI] [PubMed] [Google Scholar]
  27. Vaupel P. Oxygenation of human tumors. Strahlenther Onkol. 1990 Jun;166(6):377–386. [PubMed] [Google Scholar]
  28. Wong R. K., Fyles A., Milosevic M., Pintilie M., Hill R. P. Heterogeneity of polarographic oxygen tension measurements in cervix cancer: an evaluation of within and between tumor variability, probe position, and track depth. Int J Radiat Oncol Biol Phys. 1997 Sep 1;39(2):405–412. doi: 10.1016/s0360-3016(97)00328-3. [DOI] [PubMed] [Google Scholar]
  29. Young S. D., Marshall R. S., Hill R. P. Hypoxia induces DNA overreplication and enhances metastatic potential of murine tumor cells. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9533–9537. doi: 10.1073/pnas.85.24.9533. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES