Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 2000 Jul 24;83(4):532–538. doi: 10.1054/bjoc.2000.1263

Interferon- α 2b reduces phosphorylation and activity of MEK and ERK through a Ras / Raf -independent mechanism

F Romerio 1, A Riva 1, D Zella 1
PMCID: PMC2374650  PMID: 10945503

Abstract

Interferon (IFN)-α affects the growth, differentiation and function of various cell types by transducing regulatory signals through the Janus tyrosine kinase/signal transducers of activation and transcription (Jak/STAT) pathway. The signalling pathways employing the mitogen-activated ERK-activating kinase (MEK) and the extracellular-regulated kinase (ERK) are critical in growth factors signalling. Engagement of the receptors, and subsequent stimulation of Ras and Raf, initiates a phosphorylative cascade leading to activation of several proteins among which MEK and ERK play a central role in routing signals critical in controlling cell development, activation and proliferation. We demonstrate here that 24–48 h following treatment of transformed T- and monocytoid cell lines with recombinant human IFN-α2b both the phosphorylation and activity of MEK1 and its substrates ERK1/2 were reduced. In contrast, the activities of the upstream molecules Ras and Raf -1 were not affected. No effect on MEK/ERK activity was observed upon short-term exposure (1–30 min) to IFN. The anti-proliferative effect of IFN-α was increased by the addition in the culture medium of a specific inhibitor of MEK, namely PD98059. In conclusion, our results indicate that IFN-α regulates the activity of the MEK/ERK pathway and consequently modulates cellular proliferation through a Ras / Raf -independent mechanism. Targeting the MEK/ERK pathway may strengthen the IFN-mediated anti-cancer effect. © 2000 Cancer Research Campaign

Keywords: IFN-α, cellular proliferation, MEK/ERK pathway

Full Text

The Full Text of this article is available as a PDF (135.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahn N. G., Campbell J. S., Seger R., Jensen A. L., Graves L. M., Krebs E. G. Metabolic labeling of mitogen-activated protein kinase kinase in A431 cells demonstrates phosphorylation on serine and threonine residues. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5143–5147. doi: 10.1073/pnas.90.11.5143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderson N. G., Maller J. L., Tonks N. K., Sturgill T. W. Requirement for integration of signals from two distinct phosphorylation pathways for activation of MAP kinase. Nature. 1990 Feb 15;343(6259):651–653. doi: 10.1038/343651a0. [DOI] [PubMed] [Google Scholar]
  3. Arora T., Floyd-Smith G., Espy M. J., Jelinek D. F. Dissociation between IFN-alpha-induced anti-viral and growth signaling pathways. J Immunol. 1999 Mar 15;162(6):3289–3297. [PubMed] [Google Scholar]
  4. Bromberg J. F., Horvath C. M., Wen Z., Schreiber R. D., Darnell J. E., Jr Transcriptionally active Stat1 is required for the antiproliferative effects of both interferon alpha and interferon gamma. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7673–7678. doi: 10.1073/pnas.93.15.7673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Burgering B. M., Medema R. H., Maassen J. A., van de Wetering M. L., van der Eb A. J., McCormick F., Bos J. L. Insulin stimulation of gene expression mediated by p21ras activation. EMBO J. 1991 May;10(5):1103–1109. doi: 10.1002/j.1460-2075.1991.tb08050.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cowley S., Paterson H., Kemp P., Marshall C. J. Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell. 1994 Jun 17;77(6):841–852. doi: 10.1016/0092-8674(94)90133-3. [DOI] [PubMed] [Google Scholar]
  7. Darnell J. E., Jr STATs and gene regulation. Science. 1997 Sep 12;277(5332):1630–1635. doi: 10.1126/science.277.5332.1630. [DOI] [PubMed] [Google Scholar]
  8. David M., Petricoin E., 3rd, Benjamin C., Pine R., Weber M. J., Larner A. C. Requirement for MAP kinase (ERK2) activity in interferon alpha- and interferon beta-stimulated gene expression through STAT proteins. Science. 1995 Sep 22;269(5231):1721–1723. doi: 10.1126/science.7569900. [DOI] [PubMed] [Google Scholar]
  9. Dent P., Haser W., Haystead T. A., Vincent L. A., Roberts T. M., Sturgill T. W. Activation of mitogen-activated protein kinase kinase by v-Raf in NIH 3T3 cells and in vitro. Science. 1992 Sep 4;257(5075):1404–1407. doi: 10.1126/science.1326789. [DOI] [PubMed] [Google Scholar]
  10. Gardner A. M., Vaillancourt R. R., Lange-Carter C. A., Johnson G. L. MEK-1 phosphorylation by MEK kinase, Raf, and mitogen-activated protein kinase: analysis of phosphopeptides and regulation of activity. Mol Biol Cell. 1994 Feb;5(2):193–201. doi: 10.1091/mbc.5.2.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Grimley P. M., Fang H., Rui H., Petricoin E. F., 3rd, Ray S., Dong F., Fields K. H., Hu R., Zoon K. C., Audet S. Prolonged STAT1 activation related to the growth arrest of malignant lymphoma cells by interferon-alpha. Blood. 1998 Apr 15;91(8):3017–3027. [PubMed] [Google Scholar]
  12. Gómez N., Cohen P. Dissection of the protein kinase cascade by which nerve growth factor activates MAP kinases. Nature. 1991 Sep 12;353(6340):170–173. doi: 10.1038/353170a0. [DOI] [PubMed] [Google Scholar]
  13. Haystead C. M., Gregory P., Shirazi A., Fadden P., Mosse C., Dent P., Haystead T. A. Insulin activates a novel adipocyte mitogen-activated protein kinase kinase kinase that shows rapid phasic kinetics and is distinct from c-Raf. J Biol Chem. 1994 Apr 29;269(17):12804–12808. [PubMed] [Google Scholar]
  14. Herberman R. B. Effect of alpha-interferons on immune function. Semin Oncol. 1997 Jun;24(3 Suppl 9):S9–78-S9-80. [PubMed] [Google Scholar]
  15. Howe L. R., Leevers S. J., Gómez N., Nakielny S., Cohen P., Marshall C. J. Activation of the MAP kinase pathway by the protein kinase raf. Cell. 1992 Oct 16;71(2):335–342. doi: 10.1016/0092-8674(92)90361-f. [DOI] [PubMed] [Google Scholar]
  16. Itoh T., Kaibuchi K., Masuda T., Yamamoto T., Matsuura Y., Maeda A., Shimizu K., Takai Y. A protein factor for ras p21-dependent activation of mitogen-activated protein (MAP) kinase through MAP kinase kinase. Proc Natl Acad Sci U S A. 1993 Feb 1;90(3):975–979. doi: 10.1073/pnas.90.3.975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Khokhlatchev A. V., Canagarajah B., Wilsbacher J., Robinson M., Atkinson M., Goldsmith E., Cobb M. H. Phosphorylation of the MAP kinase ERK2 promotes its homodimerization and nuclear translocation. Cell. 1998 May 15;93(4):605–615. doi: 10.1016/s0092-8674(00)81189-7. [DOI] [PubMed] [Google Scholar]
  18. Kirk C. J., Miller R. A. Analysis of Raf-1 activation in response to TCR activation and costimulation in murine T-lymphocytes: effect of age. Cell Immunol. 1998 Nov 25;190(1):33–42. doi: 10.1006/cimm.1998.1382. [DOI] [PubMed] [Google Scholar]
  19. Kyriakis J. M., App H., Zhang X. F., Banerjee P., Brautigan D. L., Rapp U. R., Avruch J. Raf-1 activates MAP kinase-kinase. Nature. 1992 Jul 30;358(6385):417–421. doi: 10.1038/358417a0. [DOI] [PubMed] [Google Scholar]
  20. Lund T. C., Medveczky M. M., Medveczky P. G. Interferon-alpha induction of STATs1, -3 DNA binding and growth arrest is independent of Lck and active mitogen-activated kinase in T cells. Cell Immunol. 1999 Mar 15;192(2):133–139. doi: 10.1006/cimm.1999.1466. [DOI] [PubMed] [Google Scholar]
  21. Madhani H. D., Fink G. R. The riddle of MAP kinase signaling specificity. Trends Genet. 1998 Apr;14(4):151–155. doi: 10.1016/s0168-9525(98)01425-5. [DOI] [PubMed] [Google Scholar]
  22. Matsuda S., Gotoh Y., Nishida E. Phosphorylation of Xenopus mitogen-activated protein (MAP) kinase kinase by MAP kinase kinase kinase and MAP kinase. J Biol Chem. 1993 Feb 15;268(5):3277–3281. [PubMed] [Google Scholar]
  23. Pagès G., Lenormand P., L'Allemain G., Chambard J. C., Meloche S., Pouysségur J. Mitogen-activated protein kinases p42mapk and p44mapk are required for fibroblast proliferation. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8319–8323. doi: 10.1073/pnas.90.18.8319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Papin C., Denouel-Galy A., Laugier D., Calothy G., Eychène A. Modulation of kinase activity and oncogenic properties by alternative splicing reveals a novel regulatory mechanism for B-Raf. J Biol Chem. 1998 Sep 18;273(38):24939–24947. doi: 10.1074/jbc.273.38.24939. [DOI] [PubMed] [Google Scholar]
  25. Pawson T., Scott J. D. Signaling through scaffold, anchoring, and adaptor proteins. Science. 1997 Dec 19;278(5346):2075–2080. doi: 10.1126/science.278.5346.2075. [DOI] [PubMed] [Google Scholar]
  26. Pfeffer L. M., Dinarello C. A., Herberman R. B., Williams B. R., Borden E. C., Bordens R., Walter M. R., Nagabhushan T. L., Trotta P. P., Pestka S. Biological properties of recombinant alpha-interferons: 40th anniversary of the discovery of interferons. Cancer Res. 1998 Jun 15;58(12):2489–2499. [PubMed] [Google Scholar]
  27. Posada J., Yew N., Ahn N. G., Vande Woude G. F., Cooper J. A. Mos stimulates MAP kinase in Xenopus oocytes and activates a MAP kinase kinase in vitro. Mol Cell Biol. 1993 Apr;13(4):2546–2553. doi: 10.1128/mcb.13.4.2546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Pumiglia K. M., Decker S. J. Cell cycle arrest mediated by the MEK/mitogen-activated protein kinase pathway. Proc Natl Acad Sci U S A. 1997 Jan 21;94(2):448–452. doi: 10.1073/pnas.94.2.448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Resnitzky D., Tiefenbrun N., Berissi H., Kimchi A. Interferons and interleukin 6 suppress phosphorylation of the retinoblastoma protein in growth-sensitive hematopoietic cells. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):402–406. doi: 10.1073/pnas.89.1.402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rubinstein S., Familletti P. C., Pestka S. Convenient assay for interferons. J Virol. 1981 Feb;37(2):755–758. doi: 10.1128/jvi.37.2.755-758.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sakatsume M., Stancato L. F., David M., Silvennoinen O., Saharinen P., Pierce J., Larner A. C., Finbloom D. S. Interferon gamma activation of Raf-1 is Jak1-dependent and p21ras-independent. J Biol Chem. 1998 Jan 30;273(5):3021–3026. doi: 10.1074/jbc.273.5.3021. [DOI] [PubMed] [Google Scholar]
  32. Schaeffer H. J., Catling A. D., Eblen S. T., Collier L. S., Krauss A., Weber M. J. MP1: a MEK binding partner that enhances enzymatic activation of the MAP kinase cascade. Science. 1998 Sep 11;281(5383):1668–1671. doi: 10.1126/science.281.5383.1668. [DOI] [PubMed] [Google Scholar]
  33. Sebolt-Leopold J. S., Dudley D. T., Herrera R., Van Becelaere K., Wiland A., Gowan R. C., Tecle H., Barrett S. D., Bridges A., Przybranowski S. Blockade of the MAP kinase pathway suppresses growth of colon tumors in vivo. Nat Med. 1999 Jul;5(7):810–816. doi: 10.1038/10533. [DOI] [PubMed] [Google Scholar]
  34. Seger R., Krebs E. G. The MAPK signaling cascade. FASEB J. 1995 Jun;9(9):726–735. [PubMed] [Google Scholar]
  35. Stancato L. F., Sakatsume M., David M., Dent P., Dong F., Petricoin E. F., Krolewski J. J., Silvennoinen O., Saharinen P., Pierce J. Beta interferon and oncostatin M activate Raf-1 and mitogen-activated protein kinase through a JAK1-dependent pathway. Mol Cell Biol. 1997 Jul;17(7):3833–3840. doi: 10.1128/mcb.17.7.3833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Takenaka K., Moriguchi T., Nishida E. Activation of the protein kinase p38 in the spindle assembly checkpoint and mitotic arrest. Science. 1998 Apr 24;280(5363):599–602. doi: 10.1126/science.280.5363.599. [DOI] [PubMed] [Google Scholar]
  37. Uddin S., Fish E. N., Sher D. A., Gardziola C., White M. F., Platanias L. C. Activation of the phosphatidylinositol 3-kinase serine kinase by IFN-alpha. J Immunol. 1997 Mar 1;158(5):2390–2397. [PubMed] [Google Scholar]
  38. Whitmarsh A. J., Davis R. J. Structural organization of MAP-kinase signaling modules by scaffold proteins in yeast and mammals. Trends Biochem Sci. 1998 Dec;23(12):481–485. doi: 10.1016/s0968-0004(98)01309-7. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES