Abstract
Prostate cancer is the most common cancer in men in the United States, and second in cancer-induced mortality. It is likely that tumour-induced immunosuppression is one of the reasons for low treatment efficacy in patients with advanced prostate cancer. It has been recently demonstrated that prostate cancer tissue is almost devoid of dendritic cells (DC), the major antigen-presenting cells responsible for the induction of specific antitumour immune responses. In this study, we have tested the hypothesis that prostate cancer induces progressive suppression of the DC system. We found that co-incubation of human DC with three prostate cancer cell lines led to the high levels of premature apoptosis of DC, which were significantly higher than in DC cultures co-incubated with normal prostate cells or blood leucocytes. Stimulation of DC for 24 hours with CD40 ligand (CD154), IL-12 or IL-15 prior to their co-incubation with prostate cancer cells resulted in a significant increase in DC survival in the tumour microenvironment. Furthermore, activation of DC with these cytokines was also accompanied by increased expression of the anti-apoptotic protein Bcl-x L in DC, suggesting a possible mechanism involved in DC protection from apoptotic death. In summary, our data demonstrate that prostate cancer induces active elimination of DC in the tumour microenvironment. Stimulation of DC by CD154, IL-12 or IL-15 leads to an increased expression of the anti-apoptotic protein Bcl-x L and increased resistance of DC to prostate cancer-induced apoptosis. These results suggest a new mechanism of tumour escape from immune recognition and demonstrate the cytokine-based approaches which might significantly increase the efficacy of DC-based therapies for cancer. © 2000 Cancer Research Campaign
Keywords: prostate cancer, dendritic cells, immunosuppression, apoptosis, Bcl-2
Full Text
The Full Text of this article is available as a PDF (141.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akifusa S., Ohguchi M., Koseki T., Nara K., Semba I., Yamato K., Okahashi N., Merino R., Núez G., Hanada N. Increase in Bcl-2 level promoted by CD40 ligation correlates with inhibition of B cell apoptosis induced by vacuolar type H(+)-ATPase inhibitor. Exp Cell Res. 1998 Jan 10;238(1):82–89. doi: 10.1006/excr.1997.3848. [DOI] [PubMed] [Google Scholar]
- Alam M. K., Davison S., Siddiqui N., Norton J. D., Murphy J. J. Ectopic expression of Bcl-2, but not Bcl-xL rescues Ramos B cells from Fas-mediated apoptosis. Eur J Immunol. 1997 Dec;27(12):3485–3491. doi: 10.1002/eji.1830271249. [DOI] [PubMed] [Google Scholar]
- Arpin C., Déchanet J., Van Kooten C., Merville P., Grouard G., Brière F., Banchereau J., Liu Y. J. Generation of memory B cells and plasma cells in vitro. Science. 1995 May 5;268(5211):720–722. doi: 10.1126/science.7537388. [DOI] [PubMed] [Google Scholar]
- Avice M. N., Demeure C. E., Delespesse G., Rubio M., Armant M., Sarfati M. IL-15 promotes IL-12 production by human monocytes via T cell-dependent contact and may contribute to IL-12-mediated IFN-gamma secretion by CD4+ T cells in the absence of TCR ligation. J Immunol. 1998 Oct 1;161(7):3408–3415. [PubMed] [Google Scholar]
- Bander N. H., Yao D., Liu H., Chen Y. T., Steiner M., Zuccaro W., Moy P. MHC class I and II expression in prostate carcinoma and modulation by interferon-alpha and -gamma. Prostate. 1997 Dec 1;33(4):233–239. doi: 10.1002/(sici)1097-0045(19971201)33:4<233::aid-pros2>3.0.co;2-i. [DOI] [PubMed] [Google Scholar]
- Becker Y. Anticancer role of dendritic cells (DC) in human and experimental cancers--a review. Anticancer Res. 1992 Mar-Apr;12(2):511–520. [PubMed] [Google Scholar]
- Bellone G., Trinchieri G. Dual stimulatory and inhibitory effect of NK cell stimulatory factor/IL-12 on human hematopoiesis. J Immunol. 1994 Aug 1;153(3):930–937. [PubMed] [Google Scholar]
- Bigotti G., Coli A., Castagnola D. Distribution of Langerhans cells and HLA class II molecules in prostatic carcinomas of different histopathological grade. Prostate. 1991;19(1):73–87. doi: 10.1002/pros.2990190108. [DOI] [PubMed] [Google Scholar]
- Björck P., Banchereau J., Flores-Romo L. CD40 ligation counteracts Fas-induced apoptosis of human dendritic cells. Int Immunol. 1997 Mar;9(3):365–372. doi: 10.1093/intimm/9.3.365. [DOI] [PubMed] [Google Scholar]
- Bluman E. M., Bartynski K. J., Avalos B. R., Caligiuri M. A. Human natural killer cells produce abundant macrophage inflammatory protein-1 alpha in response to monocyte-derived cytokines. J Clin Invest. 1996 Jun 15;97(12):2722–2727. doi: 10.1172/JCI118726. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bulfone-Paus S., Ungureanu D., Pohl T., Lindner G., Paus R., Rückert R., Krause H., Kunzendorf U. Interleukin-15 protects from lethal apoptosis in vivo. Nat Med. 1997 Oct;3(10):1124–1128. doi: 10.1038/nm1097-1124. [DOI] [PubMed] [Google Scholar]
- Burchardt T., Burchardt M., Chen M. W., Cao Y., de la Taille A., Shabsigh A., Hayek O., Dorai T., Buttyan R. Transdifferentiation of prostate cancer cells to a neuroendocrine cell phenotype in vitro and in vivo. J Urol. 1999 Nov;162(5):1800–1805. [PubMed] [Google Scholar]
- Cardillo M. R., Petrangeli E., Perracchio L., Salvatori L., Ravenna L., Di Silverio F. Transforming growth factor-beta expression in prostate neoplasia. Anal Quant Cytol Histol. 2000 Feb;22(1):1–10. [PubMed] [Google Scholar]
- Carson W. E., Fehniger T. A., Haldar S., Eckhert K., Lindemann M. J., Lai C. F., Croce C. M., Baumann H., Caligiuri M. A. A potential role for interleukin-15 in the regulation of human natural killer cell survival. J Clin Invest. 1997 Mar 1;99(5):937–943. doi: 10.1172/JCI119258. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carson W. E., Ross M. E., Baiocchi R. A., Marien M. J., Boiani N., Grabstein K., Caligiuri M. A. Endogenous production of interleukin 15 by activated human monocytes is critical for optimal production of interferon-gamma by natural killer cells in vitro. J Clin Invest. 1995 Dec;96(6):2578–2582. doi: 10.1172/JCI118321. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Caux C., Massacrier C., Dubois B., Valladeau J., Dezutter-Dambuyant C., Durand I., Schmitt D., Saeland S. Respective involvement of TGF-beta and IL-4 in the development of Langerhans cells and non-Langerhans dendritic cells from CD34+ progenitors. J Leukoc Biol. 1999 Nov;66(5):781–791. doi: 10.1002/jlb.66.5.781. [DOI] [PubMed] [Google Scholar]
- Cella M., Scheidegger D., Palmer-Lehmann K., Lane P., Lanzavecchia A., Alber G. Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. J Exp Med. 1996 Aug 1;184(2):747–752. doi: 10.1084/jem.184.2.747. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chan S. H., Perussia B., Gupta J. W., Kobayashi M., Pospísil M., Young H. A., Wolf S. F., Young D., Clark S. C., Trinchieri G. Induction of interferon gamma production by natural killer cell stimulatory factor: characterization of the responder cells and synergy with other inducers. J Exp Med. 1991 Apr 1;173(4):869–879. doi: 10.1084/jem.173.4.869. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Esche C., Gambotto A., Satoh Y., Gerein V., Robbins P. D., Watkins S. C., Lotze M. T., Shurin M. R. CD154 inhibits tumor-induced apoptosis in dendritic cells and tumor growth. Eur J Immunol. 1999 Jul;29(7):2148–2155. doi: 10.1002/(SICI)1521-4141(199907)29:07<2148::AID-IMMU2148>3.0.CO;2-F. [DOI] [PubMed] [Google Scholar]
- Esche C., Lokshin A., Shurin G. V., Gastman B. R., Rabinowich H., Watkins S. C., Lotze M. T., Shurin M. R. Tumor's other immune targets: dendritic cells. J Leukoc Biol. 1999 Aug;66(2):336–344. doi: 10.1002/jlb.66.2.336. [DOI] [PubMed] [Google Scholar]
- Grohmann U., Fioretti M. C., Bianchi R., Belladonna M. L., Ayroldi E., Surace D., Silla S., Puccetti P. Dendritic cells, interleukin 12, and CD4+ lymphocytes in the initiation of class I-restricted reactivity to a tumor/self peptide. Crit Rev Immunol. 1998;18(1-2):87–98. doi: 10.1615/critrevimmunol.v18.i1-2.100. [DOI] [PubMed] [Google Scholar]
- Healy C. G., Simons J. W., Carducci M. A., DeWeese T. L., Bartkowski M., Tong K. P., Bolton W. E. Impaired expression and function of signal-transducing zeta chains in peripheral T cells and natural killer cells in patients with prostate cancer. Cytometry. 1998 Jun 1;32(2):109–119. doi: 10.1002/(sici)1097-0320(19980601)32:2<109::aid-cyto6>3.0.co;2-g. [DOI] [PubMed] [Google Scholar]
- Herr H. W. Suppressor cells in immunodepressed bladder and prostate cancer patients. J Urol. 1980 May;123(5):635–639. [PubMed] [Google Scholar]
- Heufler C., Koch F., Stanzl U., Topar G., Wysocka M., Trinchieri G., Enk A., Steinman R. M., Romani N., Schuler G. Interleukin-12 is produced by dendritic cells and mediates T helper 1 development as well as interferon-gamma production by T helper 1 cells. Eur J Immunol. 1996 Mar;26(3):659–668. doi: 10.1002/eji.1830260323. [DOI] [PubMed] [Google Scholar]
- Ivshina A. V., Zhumagazin Zh D., Zabotina T. N., Matveev B. P., Kadagidze Z. G. Vliianie rasprostranennosti protsessa i lecheniia na fenotip limfotsitov perifericheskoi krovi bol'nykh rakom predstatel'noi zhelezy. Urol Nefrol (Mosk) 1995 Nov-Dec;(6):36–38. [PubMed] [Google Scholar]
- Jonuleit H., Wiedemann K., Müller G., Degwert J., Hoppe U., Knop J., Enk A. H. Induction of IL-15 messenger RNA and protein in human blood-derived dendritic cells: a role for IL-15 in attraction of T cells. J Immunol. 1997 Mar 15;158(6):2610–2615. [PubMed] [Google Scholar]
- Kelsall B. L., Stüber E., Neurath M., Strober W. Interleukin-12 production by dendritic cells. The role of CD40-CD40L interactions in Th1 T-cell responses. Ann N Y Acad Sci. 1996 Oct 31;795:116–126. doi: 10.1111/j.1749-6632.1996.tb52660.x. [DOI] [PubMed] [Google Scholar]
- Kerr J. F., Wyllie A. H., Currie A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972 Aug;26(4):239–257. doi: 10.1038/bjc.1972.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klotz T., Bloch W., Volberg C., Engelmann U., Addicks K. Selective expression of inducible nitric oxide synthase in human prostate carcinoma. Cancer. 1998 May 15;82(10):1897–1903. [PubMed] [Google Scholar]
- Kobayashi M., Fitz L., Ryan M., Hewick R. M., Clark S. C., Chan S., Loudon R., Sherman F., Perussia B., Trinchieri G. Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes. J Exp Med. 1989 Sep 1;170(3):827–845. doi: 10.1084/jem.170.3.827. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kubin M., Kamoun M., Trinchieri G. Interleukin 12 synergizes with B7/CD28 interaction in inducing efficient proliferation and cytokine production of human T cells. J Exp Med. 1994 Jul 1;180(1):211–222. doi: 10.1084/jem.180.1.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Landis S. H., Murray T., Bolden S., Wingo P. A. Cancer statistics, 1999. CA Cancer J Clin. 1999 Jan-Feb;49(1):8-31, 1. doi: 10.3322/canjclin.49.1.8. [DOI] [PubMed] [Google Scholar]
- Lorenz H. M., Hieronymus T., Grünke M., Manger B., Kalden J. R. Differential role for IL-2 and IL-15 in the inhibition of apoptosis in short-term activated human lymphocytes. Scand J Immunol. 1997 Jun;45(6):660–669. doi: 10.1046/j.1365-3083.1997.d01-443.x. [DOI] [PubMed] [Google Scholar]
- Lotze M. T. Getting to the source: dendritic cells as therapeutic reagents for the treatment of patients with cancer. Ann Surg. 1997 Jul;226(1):1–5. doi: 10.1097/00000658-199707000-00001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ludewig B., Graf D., Gelderblom H. R., Becker Y., Kroczek R. A., Pauli G. Spontaneous apoptosis of dendritic cells is efficiently inhibited by TRAP (CD40-ligand) and TNF-alpha, but strongly enhanced by interleukin-10. Eur J Immunol. 1995 Jul;25(7):1943–1950. doi: 10.1002/eji.1830250722. [DOI] [PubMed] [Google Scholar]
- Mackey M. F., Gunn J. R., Maliszewsky C., Kikutani H., Noelle R. J., Barth R. J., Jr Dendritic cells require maturation via CD40 to generate protective antitumor immunity. J Immunol. 1998 Sep 1;161(5):2094–2098. [PubMed] [Google Scholar]
- Nakajima A., Kodama T., Morimoto S., Azuma M., Takeda K., Oshima H., Yoshino S., Yagita H., Okumura K. Antitumor effect of CD40 ligand: elicitation of local and systemic antitumor responses by IL-12 and B7. J Immunol. 1998 Aug 15;161(4):1901–1907. [PubMed] [Google Scholar]
- Ning Z. Q., Norton J. D., Li J., Murphy J. J. Distinct mechanisms for rescue from apoptosis in Ramos human B cells by signaling through CD40 and interleukin-4 receptor: role for inhibition of an early response gene, Berg36. Eur J Immunol. 1996 Oct;26(10):2356–2363. doi: 10.1002/eji.1830261013. [DOI] [PubMed] [Google Scholar]
- Peng X., Remacle J. E., Kasran A., Huylebroeck D., Ceuppens J. L. IL-12 up-regulates CD40 ligand (CD154) expression on human T cells. J Immunol. 1998 Feb 1;160(3):1166–1172. [PubMed] [Google Scholar]
- Ploemacher R. E., van Soest P. L., Voorwinden H., Boudewijn A. Interleukin-12 synergizes with interleukin-3 and steel factor to enhance recovery of murine hemopoietic stem cells in liquid culture. Leukemia. 1993 Sep;7(9):1381–1388. [PubMed] [Google Scholar]
- Salgaller M. L., Lodge P. A., McLean J. G., Tjoa B. A., Loftus D. J., Ragde H., Kenny G. M., Rogers M., Boynton A. L., Murphy G. P. Report of immune monitoring of prostate cancer patients undergoing T-cell therapy using dendritic cells pulsed with HLA-A2-specific peptides from prostate-specific membrane antigen (PSMA). Prostate. 1998 May;35(2):144–151. doi: 10.1002/(sici)1097-0045(19980501)35:2<144::aid-pros8>3.0.co;2-j. [DOI] [PubMed] [Google Scholar]
- Salgaller M. L., Tjoa B. A., Lodge P. A., Ragde H., Kenny G., Boynton A., Murphy G. P. Dendritic cell-based immunotherapy of prostate cancer. Crit Rev Immunol. 1998;18(1-2):109–119. doi: 10.1615/critrevimmunol.v18.i1-2.120. [DOI] [PubMed] [Google Scholar]
- Sbih-Lammali F., Clausse B., Ardila-Osorio H., Guerry R., Talbot M., Havouis S., Ferradini L., Bosq J., Tursz T., Busson P. Control of apoptosis in Epstein Barr virus-positive nasopharyngeal carcinoma cells: opposite effects of CD95 and CD40 stimulation. Cancer Res. 1999 Feb 15;59(4):924–930. [PubMed] [Google Scholar]
- Schneider T. J., Grillot D., Foote L. C., Núez G. E., Rothstein T. L. Bcl-x protects primary B cells against Fas-mediated apoptosis. J Immunol. 1997 Nov 15;159(10):4834–4839. [PubMed] [Google Scholar]
- Sharma N., Luo J., Kirschmann D. A., O'Malley Y., Robbins M. E., Akporiaye E. T., Lubaroff D. M., Heidger P. M., Hendrix M. J. A novel immunological model for the study of prostate cancer. Cancer Res. 1999 May 15;59(10):2271–2276. [PubMed] [Google Scholar]
- Shurin M. R. Dendritic cells presenting tumor antigen. Cancer Immunol Immunother. 1996 Nov;43(3):158–164. doi: 10.1007/s002620050317. [DOI] [PubMed] [Google Scholar]
- Stearns M. E., Rhim J., Wang M. Interleukin 10 (IL-10) inhibition of primary human prostate cell-induced angiogenesis: IL-10 stimulation of tissue inhibitor of metalloproteinase-1 and inhibition of matrix metalloproteinase (MMP)-2/MMP-9 secretion. Clin Cancer Res. 1999 Jan;5(1):189–196. [PubMed] [Google Scholar]
- Stearns M. E., Wang M. Antimestatic and antitumor activities of interleukin 10 in transfected human prostate PC-3 ML clones: Orthotopic growth in severe combined immunodeficient mice. Clin Cancer Res. 1998 Sep;4(9):2257–2263. [PubMed] [Google Scholar]
- Steinman R. M., Cohn Z. A. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med. 1973 May 1;137(5):1142–1162. doi: 10.1084/jem.137.5.1142. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stene M. A., Babajanians M., Bhuta S., Cochran A. J. Quantitative alterations in cutaneous Langerhans cells during the evolution of malignant melanoma of the skin. J Invest Dermatol. 1988 Aug;91(2):125–128. doi: 10.1111/1523-1747.ep12464142. [DOI] [PubMed] [Google Scholar]
- Strobl H., Knapp W. TGF-beta1 regulation of dendritic cells. Microbes Infect. 1999 Dec;1(15):1283–1290. doi: 10.1016/s1286-4579(99)00256-7. [DOI] [PubMed] [Google Scholar]
- Toriyama K., Wen D. R., Paul E., Cochran A. J. Variations in the distribution, frequency, and phenotype of Langerhans cells during the evolution of malignant melanoma of the skin. J Invest Dermatol. 1993 Mar;100(3):269S–273S. doi: 10.1111/1523-1747.ep12470135. [DOI] [PubMed] [Google Scholar]
- Troy A., Davidson P., Atkinson C., Hart D. Phenotypic characterisation of the dendritic cell infiltrate in prostate cancer. J Urol. 1998 Jul;160(1):214–219. [PubMed] [Google Scholar]
- Wang M., Liu A., Garcia F. U., Rhim J. S., Stearns M. E. Growth of HPV-18 immortalized human prostatic intraepithelial neoplasia cell lines. Influence of IL-10, follistatin, activin-A, and DHT. Int J Oncol. 1999 Jun;14(6):1185–1195. doi: 10.3892/ijo.14.6.1185. [DOI] [PubMed] [Google Scholar]
- Wikström P., Lindh G., Bergh A., Damber J. E. Alterations of transforming growth factor beta1 (TGF-beta1) and TGFbeta receptor expressions with progression in Dunning rat prostatic adenocarcinoma sublines. Urol Res. 1999 Jun;27(3):185–193. doi: 10.1007/s002400050108. [DOI] [PubMed] [Google Scholar]