Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 2000 Jul 24;83(4):526–531. doi: 10.1054/bjoc.2000.1299

Interleukin-15 antagonizes muscle protein waste in tumour-bearing rats

N Carbó 1, J López-Soriano 1, P Costelli 2, S Busquets 1, B Alvarez 1, F M Baccino 2,3, L S Quinn 4, F J López-Soriano 1, J M Argilés 1
PMCID: PMC2374658  PMID: 10945502

Abstract

Tissue protein hypercatabolism (TPH) is an important feature in cancer cachexia, particularly with regard to the skeletal muscle. The Yoshida AH-130 rat ascites hepatoma is a model system for studying the mechanisms involved in the processes that lead to tissue depletion, since it induces in the host a rapid and progressive muscle wasting, primarily due to TPH. The present study was aimed at investigating if IL-15, which is known to favour muscle fibre hypertrophy, could antagonize the enhanced muscle protein breakdown in this cancer cachexia model. Indeed, IL-15 treatment partly inhibited skeletal muscle wasting in AH-130-bearing rats by decreasing (8-fold) protein degradative rates (as measured by14C-bicarbonate pre-loading of muscle proteins) to values even lower than those observed in non-tumour-bearing animals. These alterations in protein breakdown rates were associated with an inhibition of the ATP-ubiquitin-dependent proteolytic pathway (35% and 41% for 2.4 and 1.2 kb ubiquitin mRNA, and 57% for the C8 proteasome subunit, respectively). The cytokine did not modify the plasma levels of corticosterone and insulin in the tumour hosts. The present data give new insights into the mechanisms by which IL-15 exerts its preventive effect on muscle protein wasting and seem to warrant the implementation of experimental protocols involving the use of the cytokine in the treatment of pathological states characterized by TPH, particularly in skeletal muscle, such as in the present model of cancer cachexia. © 2000 Cancer Research Campaign

Keywords: IL-15, cancer cachexia, protein turnover, skeletal muscle, proteasome, ubiquitin

Full Text

The Full Text of this article is available as a PDF (114.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akbar A. N., Borthwick N. J., Wickremasinghe R. G., Panayoitidis P., Pilling D., Bofill M., Krajewski S., Reed J. C., Salmon M. Interleukin-2 receptor common gamma-chain signaling cytokines regulate activated T cell apoptosis in response to growth factor withdrawal: selective induction of anti-apoptotic (bcl-2, bcl-xL) but not pro-apoptotic (bax, bcl-xS) gene expression. Eur J Immunol. 1996 Feb;26(2):294–299. doi: 10.1002/eji.1830260204. [DOI] [PubMed] [Google Scholar]
  2. Albano J. D., Ekins R. P., Maritz G., Turner R. C. A sensitive, precise radioimmunoassay of serum insulin relying on charcoal separation of bound and free hormone moieties. Acta Endocrinol (Copenh) 1972 Jul;70(3):487–509. doi: 10.1530/acta.0.0700487. [DOI] [PubMed] [Google Scholar]
  3. Argilés J. M., López-Soriano F. J. The ubiquitin-dependent proteolytic pathway in skeletal muscle: its role in pathological states. Trends Pharmacol Sci. 1996 Jun;17(6):223–226. doi: 10.1016/0165-6147(96)10021-3. [DOI] [PubMed] [Google Scholar]
  4. Armitage R. J., Macduff B. M., Eisenman J., Paxton R., Grabstein K. H. IL-15 has stimulatory activity for the induction of B cell proliferation and differentiation. J Immunol. 1995 Jan 15;154(2):483–490. [PubMed] [Google Scholar]
  5. Baccino F. M., Tessitore L., Bonelli G., Isidoro C. Protein turnover states of tumour cells and host tissues in an experimental model. Biomed Biochim Acta. 1986;45(11-12):1585–1590. [PubMed] [Google Scholar]
  6. Beck S. A., Smith K. L., Tisdale M. J. Anticachectic and antitumor effect of eicosapentaenoic acid and its effect on protein turnover. Cancer Res. 1991 Nov 15;51(22):6089–6093. [PubMed] [Google Scholar]
  7. Beck S. A., Tisdale M. J. Nitrogen excretion in cancer cachexia and its modification by a high fat diet in mice. Cancer Res. 1989 Jul 15;49(14):3800–3804. [PubMed] [Google Scholar]
  8. Bond U., Agell N., Haas A. L., Redman K., Schlesinger M. J. Ubiquitin in stressed chicken embryo fibroblasts. J Biol Chem. 1988 Feb 15;263(5):2384–2388. [PubMed] [Google Scholar]
  9. Bond U., Schlesinger M. J. Ubiquitin is a heat shock protein in chicken embryo fibroblasts. Mol Cell Biol. 1985 May;5(5):949–956. doi: 10.1128/mcb.5.5.949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  11. Bulfone-Paus S., Ungureanu D., Pohl T., Lindner G., Paus R., Rückert R., Krause H., Kunzendorf U. Interleukin-15 protects from lethal apoptosis in vivo. Nat Med. 1997 Oct;3(10):1124–1128. doi: 10.1038/nm1097-1124. [DOI] [PubMed] [Google Scholar]
  12. Burton J. D., Bamford R. N., Peters C., Grant A. J., Kurys G., Goldman C. K., Brennan J., Roessler E., Waldmann T. A. A lymphokine, provisionally designated interleukin T and produced by a human adult T-cell leukemia line, stimulates T-cell proliferation and the induction of lymphokine-activated killer cells. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4935–4939. doi: 10.1073/pnas.91.11.4935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Carbó N., Costelli P., Tessitore L., Bagby G. J., López-Soriano F. J., Baccino F. M., Argilés J. M. Anti-tumour necrosis factor-alpha treatment interferes with changes in lipid metabolism in a tumour cachexia model. Clin Sci (Lond) 1994 Sep;87(3):349–355. doi: 10.1042/cs0870349. [DOI] [PubMed] [Google Scholar]
  14. Carson W. E., Fehniger T. A., Haldar S., Eckhert K., Lindemann M. J., Lai C. F., Croce C. M., Baumann H., Caligiuri M. A. A potential role for interleukin-15 in the regulation of human natural killer cell survival. J Clin Invest. 1997 Mar 1;99(5):937–943. doi: 10.1172/JCI119258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Carson W. E., Giri J. G., Lindemann M. J., Linett M. L., Ahdieh M., Paxton R., Anderson D., Eisenmann J., Grabstein K., Caligiuri M. A. Interleukin (IL) 15 is a novel cytokine that activates human natural killer cells via components of the IL-2 receptor. J Exp Med. 1994 Oct 1;180(4):1395–1403. doi: 10.1084/jem.180.4.1395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  17. Ciechanover A., Finley D., Varshavsky A. Ubiquitin dependence of selective protein degradation demonstrated in the mammalian cell cycle mutant ts85. Cell. 1984 May;37(1):57–66. doi: 10.1016/0092-8674(84)90300-3. [DOI] [PubMed] [Google Scholar]
  18. Costelli P., Carbó N., Tessitore L., Bagby G. J., Lopez-Soriano F. J., Argilés J. M., Baccino F. M. Tumor necrosis factor-alpha mediates changes in tissue protein turnover in a rat cancer cachexia model. J Clin Invest. 1993 Dec;92(6):2783–2789. doi: 10.1172/JCI116897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Costelli P., García-Martínez C., Llovera M., Carbó N., López-Soriano F. J., Agell N., Tessitore L., Baccino F. M., Argilés J. M. Muscle protein waste in tumor-bearing rats is effectively antagonized by a beta 2-adrenergic agonist (clenbuterol). Role of the ATP-ubiquitin-dependent proteolytic pathway. J Clin Invest. 1995 May;95(5):2367–2372. doi: 10.1172/JCI117929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Dessí S., Batetta B., Anchisi C., Pani P., Costelli P., Tessitore L., Baccino F. M. Cholesterol metabolism during the growth of a rat ascites hepatoma (Yoshida AH-130). Br J Cancer. 1992 Nov;66(5):787–793. doi: 10.1038/bjc.1992.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. García-Martínez C., López-Soriano F. J., Argilés J. M. Acute treatment with tumour necrosis factor-alpha induces changes in protein metabolism in rat skeletal muscle. Mol Cell Biochem. 1993 Aug 11;125(1):11–18. doi: 10.1007/BF00926829. [DOI] [PubMed] [Google Scholar]
  22. Garlick P. J., Millward D. J., James W. P., Waterlow J. C. The effect of protein deprivation and starvation on the rate of protein synthesis in tissues of the rat. Biochim Biophys Acta. 1975 Nov 18;414(1):71–84. doi: 10.1016/0005-2787(75)90126-4. [DOI] [PubMed] [Google Scholar]
  23. Girard D., Paquet M. E., Paquin R., Beaulieu A. D. Differential effects of interleukin-15 (IL-15) and IL-2 on human neutrophils: modulation of phagocytosis, cytoskeleton rearrangement, gene expression, and apoptosis by IL-15. Blood. 1996 Oct 15;88(8):3176–3184. [PubMed] [Google Scholar]
  24. Giri J. G., Ahdieh M., Eisenman J., Shanebeck K., Grabstein K., Kumaki S., Namen A., Park L. S., Cosman D., Anderson D. Utilization of the beta and gamma chains of the IL-2 receptor by the novel cytokine IL-15. EMBO J. 1994 Jun 15;13(12):2822–2830. doi: 10.1002/j.1460-2075.1994.tb06576.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Grabstein K. H., Eisenman J., Shanebeck K., Rauch C., Srinivasan S., Fung V., Beers C., Richardson J., Schoenborn M. A., Ahdieh M. Cloning of a T cell growth factor that interacts with the beta chain of the interleukin-2 receptor. Science. 1994 May 13;264(5161):965–968. doi: 10.1126/science.8178155. [DOI] [PubMed] [Google Scholar]
  26. Hilenski L. L., Terracio L., Haas A. L., Borg T. K. Immunolocalization of ubiquitin conjugates at Z-bands and intercalated discs of rat cardiomyocytes in vitro and in vivo. J Histochem Cytochem. 1992 Jul;40(7):1037–1042. doi: 10.1177/40.7.1318894. [DOI] [PubMed] [Google Scholar]
  27. Kien C. L., Camitta B. M. Close association of accelerated rates of whole body protein turnover (synthesis and breakdown) and energy expenditure in children with newly diagnosed acute lymphocytic leukemia. JPEN J Parenter Enteral Nutr. 1987 Mar-Apr;11(2):129–134. doi: 10.1177/0148607187011002129. [DOI] [PubMed] [Google Scholar]
  28. Kien C. L., Camitta B. M. Increased whole-body protein turnover in sick children with newly diagnosed leukemia or lymphoma. Cancer Res. 1983 Nov;43(11):5586–5592. [PubMed] [Google Scholar]
  29. Lawson D. H., Richmond A., Nixon D. W., Rudman D. Metabolic approaches to cancer cachexia. Annu Rev Nutr. 1982;2:277–301. doi: 10.1146/annurev.nu.02.070182.001425. [DOI] [PubMed] [Google Scholar]
  30. Llovera M., Garcia-Martinez C., Agell N., Lopez-Soriano F. J., Argiles J. M. Muscle wasting associated with cancer cachexia is linked to an important activation of the ATP-dependent ubiquitin-mediated proteolysis. Int J Cancer. 1995 Mar 29;61(1):138–141. doi: 10.1002/ijc.2910610123. [DOI] [PubMed] [Google Scholar]
  31. Llovera M., García-Martínez C., Agell N., Marzábal M., López-Soriano F. J., Argilés J. M. Ubiquitin gene expression is increased in skeletal muscle of tumour-bearing rats. FEBS Lett. 1994 Feb 7;338(3):311–318. doi: 10.1016/0014-5793(94)80290-4. [DOI] [PubMed] [Google Scholar]
  32. Llovera M., López-Soriano F. J., Argilés J. M. Chronic tumour necrosis factor-alpha treatment modifies protein turnover in rat tissues. Biochem Mol Biol Int. 1993 May;30(1):29–36. [PubMed] [Google Scholar]
  33. Llovera M., López-Soriano F. J., Argilés J. M. Effects of tumor necrosis factor-alpha on muscle-protein turnover in female Wistar rats. J Natl Cancer Inst. 1993 Aug 18;85(16):1334–1339. doi: 10.1093/jnci/85.16.1334. [DOI] [PubMed] [Google Scholar]
  34. Lowell B. B., Ruderman N. B., Goodman M. N. Evidence that lysosomes are not involved in the degradation of myofibrillar proteins in rat skeletal muscle. Biochem J. 1986 Feb 15;234(1):237–240. doi: 10.1042/bj2340237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Lundholm K., Ekman L., Edström S., Karlberg I., Jagenburg R., Scherstén T. Protein synthesis in liver tissue under the influence of a methylcholanthrene-induced sarcoma in mice. Cancer Res. 1979 Nov;39(11):4657–4661. [PubMed] [Google Scholar]
  36. Melville S., McNurlan M. A., Calder A. G., Garlick P. J. Increased protein turnover despite normal energy metabolism and responses to feeding in patients with lung cancer. Cancer Res. 1990 Feb 15;50(4):1125–1131. [PubMed] [Google Scholar]
  37. Moley J. F., Morrison S. D., Gorschboth C. M., Norton J. A. Body composition changes in rats with experimental cancer cachexia: improvement with exogenous insulin. Cancer Res. 1988 May 15;48(10):2784–2787. [PubMed] [Google Scholar]
  38. Munger W., DeJoy S. Q., Jeyaseelan R., Sr, Torley L. W., Grabstein K. H., Eisenmann J., Paxton R., Cox T., Wick M. M., Kerwar S. S. Studies evaluating the antitumor activity and toxicity of interleukin-15, a new T cell growth factor: comparison with interleukin-2. Cell Immunol. 1995 Oct 15;165(2):289–293. doi: 10.1006/cimm.1995.1216. [DOI] [PubMed] [Google Scholar]
  39. Pain V. M., Randall D. P., Garlick P. J. Protein synthesis in liver and skeletal muscle of mice bearing an ascites tumor. Cancer Res. 1984 Mar;44(3):1054–1057. [PubMed] [Google Scholar]
  40. Popp M. B., Wagner S. C., Enrione E. B., Brito O. J. Host and tumor responses to varying rates of nitrogen infusion in the tumor-bearing rat. Ann Surg. 1988 Jan;207(1):80–89. doi: 10.1097/00000658-198801000-00016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Quinn L. S., Haugk K. L., Grabstein K. H. Interleukin-15: a novel anabolic cytokine for skeletal muscle. Endocrinology. 1995 Aug;136(8):3669–3672. doi: 10.1210/endo.136.8.7628408. [DOI] [PubMed] [Google Scholar]
  42. Reinecker H. C., MacDermott R. P., Mirau S., Dignass A., Podolsky D. K. Intestinal epithelial cells both express and respond to interleukin 15. Gastroenterology. 1996 Dec;111(6):1706–1713. doi: 10.1016/s0016-5085(96)70036-7. [DOI] [PubMed] [Google Scholar]
  43. Shaw J. H., Wolfe R. R. Whole-body protein kinetics in patients with early and advanced gastrointestinal cancer: the response to glucose infusion and total parenteral nutrition. Surgery. 1988 Feb;103(2):148–155. [PubMed] [Google Scholar]
  44. Tanaka K., Kanayama H., Tamura T., Lee D. H., Kumatori A., Fujiwara T., Ichihara A., Tokunaga F., Aruga R., Iwanaga S. cDNA cloning and sequencing of component C8 of proteasomes from rat hepatoma cells. Biochem Biophys Res Commun. 1990 Sep 14;171(2):676–683. doi: 10.1016/0006-291x(90)91199-3. [DOI] [PubMed] [Google Scholar]
  45. Tayek J. A., Istfan N. W., Jones C. T., Hamawy K. J., Bistrian B. R., Blackburn G. L. Influence of the Walker 256 carcinosarcoma on muscle, tumor, and whole-body protein synthesis and growth rate in the cancer-bearing rat. Cancer Res. 1986 Nov;46(11):5649–5654. [PubMed] [Google Scholar]
  46. Tessitore L., Bonelli G., Baccino F. M. Early development of protein metabolic perturbations in the liver and skeletal muscle of tumour-bearing rats. A model system for cancer cachexia. Biochem J. 1987 Jan 1;241(1):153–159. doi: 10.1042/bj2410153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Tessitore L., Bonelli G., Cecchini G., Amenta J. S., Baccino F. M. Regulation of protein turnover versus growth state: ascites hepatoma as a model for studies both in the animal and in vitro. Arch Biochem Biophys. 1987 Jun;255(2):372–384. doi: 10.1016/0003-9861(87)90405-x. [DOI] [PubMed] [Google Scholar]
  48. Tessitore L., Bonelli G., Isidoro C., Kazakova O. V., Baccino F. M. Comparative studies on protein turnover regulations in tumor cells and host tissues: development and analysis of an experimental model. Toxicol Pathol. 1986;14(4):451–456. doi: 10.1177/019262338601400411. [DOI] [PubMed] [Google Scholar]
  49. Tessitore L., Costelli P., Baccino F. M. Humoral mediation for cachexia in tumour-bearing rats. Br J Cancer. 1993 Jan;67(1):15–23. doi: 10.1038/bjc.1993.4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Tessitore L., Costelli P., Baccino F. M. Pharmacological interference with tissue hypercatabolism in tumour-bearing rats. Biochem J. 1994 Apr 1;299(Pt 1):71–78. doi: 10.1042/bj2990071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Tessitore L., Costelli P., Bonetti G., Baccino F. M. Cancer cachexia, malnutrition, and tissue protein turnover in experimental animals. Arch Biochem Biophys. 1993 Oct;306(1):52–58. doi: 10.1006/abbi.1993.1479. [DOI] [PubMed] [Google Scholar]
  52. Tisdale M. J. Cancer cachexia. Br J Cancer. 1991 Mar;63(3):337–342. doi: 10.1038/bjc.1991.80. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES