Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 2000 Sep 4;83(7):892–898. doi: 10.1054/bjoc.2000.1371

MDR 1 activation is the predominant resistance mechanism selected by vinblastine in MES-SA cells

G K Chen 1, G E Durán 1, A Mangili 1, L Beketic-Oreskovic 1, B I Sikic 1
PMCID: PMC2374671  PMID: 10970691

Abstract

Single-step selection with vinblastine was performed in populations of the human sarcoma cell line MES-SA, to assess cellular mechanisms of resistance to the drug and mutation rates via fluctuation analysis. At a stringent selection with 20 nM vinblastine, resulting in 5–6 logs of cell killing, the mutation rate was 7 × 10–7per cell generation. Analysis of variance supported the hypothesis of spontaneous mutations conferring vinblastine resistance, rather than induction of adaptive response elements. Surviving clones displayed a stable multidrug resistance phenotype over a 3-month period. All propagated clones demonstrated high levels of resistance to vinblastine and paclitaxel, and lower cross-resistance to doxorubicin and etoposide. Activation of MDR 1 gene expression and P-glycoprotein function was demonstrable in all clones. No elevation was found in the expression of the mrp gene, the LRP-56 major vault protein and β-tubulin isotypes (M40, β4, 5β, and β9) in these mutants. We conclude that initial-step resistant mechanism in these vinblastine-selected mutants commonly arises from a stochastic mutation event with activation of the MDR 1 gene. © 2000 Cancer Research Campaign

Keywords: multidrug resistance, P-glycoprotein, vinblastine, fluctuation analysis

Full Text

The Full Text of this article is available as a PDF (290.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beketic-Oreskovic L., Durán G. E., Chen G., Dumontet C., Sikic B. I. Decreased mutation rate for cellular resistance to doxorubicin and suppression of mdr1 gene activation by the cyclosporin PSC 833. J Natl Cancer Inst. 1995 Nov 1;87(21):1593–1602. doi: 10.1093/jnci/87.21.1593. [DOI] [PubMed] [Google Scholar]
  2. Boesen J. J., Niericker M. J., Dieteren N., Simons J. W. How variable is a spontaneous mutation rate in cultured mammalian cells? Mutat Res. 1994 May 1;307(1):121–129. doi: 10.1016/0027-5107(94)90284-4. [DOI] [PubMed] [Google Scholar]
  3. Cabral F., Barlow S. B. Mechanisms by which mammalian cells acquire resistance to drugs that affect microtubule assembly. FASEB J. 1989 Mar;3(5):1593–1599. doi: 10.1096/fasebj.3.5.2646163. [DOI] [PubMed] [Google Scholar]
  4. Chen G., Durán G. E., Steger K. A., Lacayo N. J., Jaffrézou J. P., Dumontet C., Sikic B. I. Multidrug-resistant human sarcoma cells with a mutant P-glycoprotein, altered phenotype, and resistance to cyclosporins. J Biol Chem. 1997 Feb 28;272(9):5974–5982. doi: 10.1074/jbc.272.9.5974. [DOI] [PubMed] [Google Scholar]
  5. Chen G., Jaffrézou J. P., Fleming W. H., Durán G. E., Sikic B. I. Prevalence of multidrug resistance related to activation of the mdr1 gene in human sarcoma mutants derived by single-step doxorubicin selection. Cancer Res. 1994 Sep 15;54(18):4980–4987. [PubMed] [Google Scholar]
  6. Cole J., Arlett C. F., Green M. H. The fluctuation test as a more sensitive system for determining induced mutation in L5178Y mouse lymphoma cells. Mutat Res. 1976 Dec;41(2-3):377–386. doi: 10.1016/0027-5107(76)90110-x. [DOI] [PubMed] [Google Scholar]
  7. Crawford B. D., Barrett J. C., Ts'o P. O. Neoplastic conversion of preneoplastic Syrian hamster cells: rate estimation by fluctuation analysis. Mol Cell Biol. 1983 May;3(5):931–945. doi: 10.1128/mcb.3.5.931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dumontet C., Duran G. E., Steger K. A., Beketic-Oreskovic L., Sikic B. I. Resistance mechanisms in human sarcoma mutants derived by single-step exposure to paclitaxel (Taxol). Cancer Res. 1996 Mar 1;56(5):1091–1097. [PubMed] [Google Scholar]
  9. Dumontet C., Sikic B. I. Mechanisms of action of and resistance to antitubulin agents: microtubule dynamics, drug transport, and cell death. J Clin Oncol. 1999 Mar;17(3):1061–1070. doi: 10.1200/JCO.1999.17.3.1061. [DOI] [PubMed] [Google Scholar]
  10. Fisher G. A., Sikic B. I. Clinical studies with modulators of multidrug resistance. Hematol Oncol Clin North Am. 1995 Apr;9(2):363–382. [PubMed] [Google Scholar]
  11. Giannakakou P., Sackett D. L., Kang Y. K., Zhan Z., Buters J. T., Fojo T., Poruchynsky M. S. Paclitaxel-resistant human ovarian cancer cells have mutant beta-tubulins that exhibit impaired paclitaxel-driven polymerization. J Biol Chem. 1997 Jul 4;272(27):17118–17125. doi: 10.1074/jbc.272.27.17118. [DOI] [PubMed] [Google Scholar]
  12. Goldie J. H., Coldman A. J. A mathematic model for relating the drug sensitivity of tumors to their spontaneous mutation rate. Cancer Treat Rep. 1979 Nov-Dec;63(11-12):1727–1733. [PubMed] [Google Scholar]
  13. Gottesman M. M. How cancer cells evade chemotherapy: sixteenth Richard and Hinda Rosenthal Foundation Award Lecture. Cancer Res. 1993 Feb 15;53(4):747–754. [PubMed] [Google Scholar]
  14. Haber M., Burkhart C. A., Regl D. L., Madafiglio J., Norris M. D., Horwitz S. B. Altered expression of M beta 2, the class II beta-tubulin isotype, in a murine J774.2 cell line with a high level of taxol resistance. J Biol Chem. 1995 Dec 29;270(52):31269–31275. doi: 10.1074/jbc.270.52.31269. [DOI] [PubMed] [Google Scholar]
  15. Harker W. G., MacKintosh F. R., Sikic B. I. Development and characterization of a human sarcoma cell line, MES-SA, sensitive to multiple drugs. Cancer Res. 1983 Oct;43(10):4943–4950. [PubMed] [Google Scholar]
  16. Harker W. G., Sikic B. I. Multidrug (pleiotropic) resistance in doxorubicin-selected variants of the human sarcoma cell line MES-SA. Cancer Res. 1985 Sep;45(9):4091–4096. [PubMed] [Google Scholar]
  17. Jaffrézou J. P., Chen G., Durán G. E., Kühl J. S., Sikic B. I. Mutation rates and mechanisms of resistance to etoposide determined from fluctuation analysis. J Natl Cancer Inst. 1994 Aug 3;86(15):1152–1158. doi: 10.1093/jnci/86.15.1152. [DOI] [PubMed] [Google Scholar]
  18. Kendal W. S., Frost P. Pitfalls and practice of Luria-Delbrück fluctuation analysis: a review. Cancer Res. 1988 Mar 1;48(5):1060–1065. [PubMed] [Google Scholar]
  19. Kimmel M., Axelrod D. E. Fluctuation test for two-stage mutations: application to gene amplification. Mutat Res. 1994 Apr 1;306(1):45–60. doi: 10.1016/0027-5107(94)90166-x. [DOI] [PubMed] [Google Scholar]
  20. Ling V. Charles F. Kettering Prize. P-glycoprotein and resistance to anticancer drugs. Cancer. 1992 May 15;69(10):2603–2609. doi: 10.1002/1097-0142(19920515)69:10<2603::aid-cncr2820691034>3.0.co;2-e. [DOI] [PubMed] [Google Scholar]
  21. Luria S. E., Delbrück M. Mutations of Bacteria from Virus Sensitivity to Virus Resistance. Genetics. 1943 Nov;28(6):491–511. doi: 10.1093/genetics/28.6.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sikic B. I., Fisher G. A., Lum B. L., Halsey J., Beketic-Oreskovic L., Chen G. Modulation and prevention of multidrug resistance by inhibitors of P-glycoprotein. Cancer Chemother Pharmacol. 1997;40 (Suppl):S13–S19. doi: 10.1007/s002800051055. [DOI] [PubMed] [Google Scholar]
  23. Tlsty T. D., Margolin B. H., Lum K. Differences in the rates of gene amplification in nontumorigenic and tumorigenic cell lines as measured by Luria-Delbrück fluctuation analysis. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9441–9445. doi: 10.1073/pnas.86.23.9441. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES