Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 2000 Sep 4;83(7):928–934. doi: 10.1054/bjoc.2000.1367

Suppression of manganese superoxide dismutase augments sensitivity to radiation, hyperthermia and doxorubicin in colon cancer cell lines by inducing apoptosis

S Kuninaka 1, Y Ichinose 2, K Koja 4, Y Toh 3
PMCID: PMC2374675  PMID: 10970696

Abstract

Increased expression of manganese superoxide dismutase (Mn-SOD), one of the mitochondrial enzymes involved in the redox system, has been shown to diminish the cytotoxic effects of several anti-cancer modalities, including tumour necrosis factor-α, ionizing radiation, certain chemotherapeutic agents and hyperthermia. We asked if Mn-SOD is a potential target to augment the sensitivity of cancer cells to various anti-cancer treatments and for this we established stable Mn-SOD antisense RNA expressing cell clones from two human colon cancer cell lines, HCT116 (p53 wild-type) and DLD1 (p53 mutant-type). Suppression of Mn-SOD in HCT116 was accompanied by an increased sensitivity to radiation, hyperthermia and doxorubicin, as compared with findings in controls. The mitochondrial permeability transition, as measured by a decrease of the mitochondrial transmembrane potential was more intensely induced by radiation in HCT116 antisense clones than in the control, an event followed by a greater extent of DNA fragmentation. Apoptosis was also induced by hyperthermia more intensely in HCT116 antisense clones than in the control. On the other hand, DLD1 antisense clones did not exhibit any enhancement of sensitivity to any of these treatments. These data support the possibility that inhibition of Mn-SOD activity renders colon cancer cells with wild-type p53 susceptible to apoptosis induced by radiation, hyperthermia and selected anti-cancer drugs. Therefore, we suggest that Mn-SOD could be a target molecule to overcome the resistance to anti-cancer treatments in some colon cancer cells carrying wild-type p53. © 2000 Cancer Research Campaign

Keywords: Mn-SOD, radiation, hyperthermia, sensitivity, apoptosis

Full Text

The Full Text of this article is available as a PDF (203.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beauchamp C., Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem. 1971 Nov;44(1):276–287. doi: 10.1016/0003-2697(71)90370-8. [DOI] [PubMed] [Google Scholar]
  2. Buttke T. M., Sandstrom P. A. Oxidative stress as a mediator of apoptosis. Immunol Today. 1994 Jan;15(1):7–10. doi: 10.1016/0167-5699(94)90018-3. [DOI] [PubMed] [Google Scholar]
  3. Church S. L., Grant J. W., Ridnour L. A., Oberley L. W., Swanson P. E., Meltzer P. S., Trent J. M. Increased manganese superoxide dismutase expression suppresses the malignant phenotype of human melanoma cells. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):3113–3117. doi: 10.1073/pnas.90.7.3113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cobbs C. S., Levi D. S., Aldape K., Israel M. A. Manganese superoxide dismutase expression in human central nervous system tumors. Cancer Res. 1996 Jul 15;56(14):3192–3195. [PubMed] [Google Scholar]
  5. Fisher D. E. Apoptosis in cancer therapy: crossing the threshold. Cell. 1994 Aug 26;78(4):539–542. doi: 10.1016/0092-8674(94)90518-5. [DOI] [PubMed] [Google Scholar]
  6. Fridovich I. Superoxide anion radical (O2-.), superoxide dismutases, and related matters. J Biol Chem. 1997 Jul 25;272(30):18515–18517. doi: 10.1074/jbc.272.30.18515. [DOI] [PubMed] [Google Scholar]
  7. Fujimura M., Morita-Fujimura Y., Kawase M., Copin J. C., Calagui B., Epstein C. J., Chan P. H. Manganese superoxide dismutase mediates the early release of mitochondrial cytochrome C and subsequent DNA fragmentation after permanent focal cerebral ischemia in mice. J Neurosci. 1999 May 1;19(9):3414–3422. doi: 10.1523/JNEUROSCI.19-09-03414.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Graeber T. G., Osmanian C., Jacks T., Housman D. E., Koch C. J., Lowe S. W., Giaccia A. J. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature. 1996 Jan 4;379(6560):88–91. doi: 10.1038/379088a0. [DOI] [PubMed] [Google Scholar]
  9. Green D. R., Reed J. C. Mitochondria and apoptosis. Science. 1998 Aug 28;281(5381):1309–1312. doi: 10.1126/science.281.5381.1309. [DOI] [PubMed] [Google Scholar]
  10. Higuchi M., Honda T., Proske R. J., Yeh E. T. Regulation of reactive oxygen species-induced apoptosis and necrosis by caspase 3-like proteases. Oncogene. 1998 Nov 26;17(21):2753–2760. doi: 10.1038/sj.onc.1202211. [DOI] [PubMed] [Google Scholar]
  11. Hirose K., Longo D. L., Oppenheim J. J., Matsushima K. Overexpression of mitochondrial manganese superoxide dismutase promotes the survival of tumor cells exposed to interleukin-1, tumor necrosis factor, selected anticancer drugs, and ionizing radiation. FASEB J. 1993 Feb 1;7(2):361–368. doi: 10.1096/fasebj.7.2.8440412. [DOI] [PubMed] [Google Scholar]
  12. Hotz M. A., Gong J., Traganos F., Darzynkiewicz Z. Flow cytometric detection of apoptosis: comparison of the assays of in situ DNA degradation and chromatin changes. Cytometry. 1994 Mar 1;15(3):237–244. doi: 10.1002/cyto.990150309. [DOI] [PubMed] [Google Scholar]
  13. Janssen A. M., Bosman C. B., Sier C. F., Griffioen G., Kubben F. J., Lamers C. B., van Krieken J. H., van de Velde C. J., Verspaget H. W. Superoxide dismutases in relation to the overall survival of colorectal cancer patients. Br J Cancer. 1998 Oct;78(8):1051–1057. doi: 10.1038/bjc.1998.626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Janssen Y. M., Van Houten B., Borm P. J., Mossman B. T. Cell and tissue responses to oxidative damage. Lab Invest. 1993 Sep;69(3):261–274. [PubMed] [Google Scholar]
  15. Johnson T. M., Yu Z. X., Ferrans V. J., Lowenstein R. A., Finkel T. Reactive oxygen species are downstream mediators of p53-dependent apoptosis. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11848–11852. doi: 10.1073/pnas.93.21.11848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kastan M. B., Onyekwere O., Sidransky D., Vogelstein B., Craig R. W. Participation of p53 protein in the cellular response to DNA damage. Cancer Res. 1991 Dec 1;51(23 Pt 1):6304–6311. [PubMed] [Google Scholar]
  17. Keyer K., Imlay J. A. Superoxide accelerates DNA damage by elevating free-iron levels. Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):13635–13640. doi: 10.1073/pnas.93.24.13635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kinnula V. L., Pietarinen-Runtti P., Raivio K., Kahlos K., Pelin K., Mattson K., Linnainmaa K. Manganese superoxide dismutase in human pleural mesothelioma cell lines. Free Radic Biol Med. 1996;21(4):527–532. doi: 10.1016/0891-5849(96)00049-4. [DOI] [PubMed] [Google Scholar]
  19. Landriscina M., Remiddi F., Ria F., Palazzotti B., De Leo M. E., Iacoangeli M., Rosselli R., Scerrati M., Galeotti T. The level of MnSOD is directly correlated with grade of brain tumours of neuroepithelial origin. Br J Cancer. 1996 Dec;74(12):1877–1885. doi: 10.1038/bjc.1996.648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Li J. J., Oberley L. W. Overexpression of manganese-containing superoxide dismutase confers resistance to the cytotoxicity of tumor necrosis factor alpha and/or hyperthermia. Cancer Res. 1997 May 15;57(10):1991–1998. [PubMed] [Google Scholar]
  21. Li J. J., Oberley L. W., St Clair D. K., Ridnour L. A., Oberley T. D. Phenotypic changes induced in human breast cancer cells by overexpression of manganese-containing superoxide dismutase. Oncogene. 1995 May 18;10(10):1989–2000. [PubMed] [Google Scholar]
  22. Lowe S. W., Ruley H. E., Jacks T., Housman D. E. p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell. 1993 Sep 24;74(6):957–967. doi: 10.1016/0092-8674(93)90719-7. [DOI] [PubMed] [Google Scholar]
  23. Marzo I., Brenner C., Zamzami N., Susin S. A., Beutner G., Brdiczka D., Rémy R., Xie Z. H., Reed J. C., Kroemer G. The permeability transition pore complex: a target for apoptosis regulation by caspases and bcl-2-related proteins. J Exp Med. 1998 Apr 20;187(8):1261–1271. doi: 10.1084/jem.187.8.1261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Miyashita T., Reed J. C. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell. 1995 Jan 27;80(2):293–299. doi: 10.1016/0092-8674(95)90412-3. [DOI] [PubMed] [Google Scholar]
  25. Muschel R. J., Soto D. E., McKenna W. G., Bernhard E. J. Radiosensitization and apoptosis. Oncogene. 1998 Dec 24;17(25):3359–3363. doi: 10.1038/sj.onc.1202580. [DOI] [PubMed] [Google Scholar]
  26. Oberley L. W., Buettner G. R. Role of superoxide dismutase in cancer: a review. Cancer Res. 1979 Apr;39(4):1141–1149. [PubMed] [Google Scholar]
  27. Oberley T. D., Oberley L. W. Antioxidant enzyme levels in cancer. Histol Histopathol. 1997 Apr;12(2):525–535. [PubMed] [Google Scholar]
  28. Polyak K., Xia Y., Zweier J. L., Kinzler K. W., Vogelstein B. A model for p53-induced apoptosis. Nature. 1997 Sep 18;389(6648):300–305. doi: 10.1038/38525. [DOI] [PubMed] [Google Scholar]
  29. Shimizu S., Eguchi Y., Kamiike W., Waguri S., Uchiyama Y., Matsuda H., Tsujimoto Y. Bcl-2 blocks loss of mitochondrial membrane potential while ICE inhibitors act at a different step during inhibition of death induced by respiratory chain inhibitors. Oncogene. 1996 Jul 4;13(1):21–29. [PubMed] [Google Scholar]
  30. Sinha B. K., Mimnaugh E. G. Free radicals and anticancer drug resistance: oxygen free radicals in the mechanisms of drug cytotoxicity and resistance by certain tumors. Free Radic Biol Med. 1990;8(6):567–581. doi: 10.1016/0891-5849(90)90155-c. [DOI] [PubMed] [Google Scholar]
  31. Susin S. A., Lorenzo H. K., Zamzami N., Marzo I., Brenner C., Larochette N., Prévost M. C., Alzari P. M., Kroemer G. Mitochondrial release of caspase-2 and -9 during the apoptotic process. J Exp Med. 1999 Jan 18;189(2):381–394. doi: 10.1084/jem.189.2.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Susin S. A., Lorenzo H. K., Zamzami N., Marzo I., Snow B. E., Brothers G. M., Mangion J., Jacotot E., Costantini P., Loeffler M. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature. 1999 Feb 4;397(6718):441–446. doi: 10.1038/17135. [DOI] [PubMed] [Google Scholar]
  33. Susin S. A., Zamzami N., Kroemer G. Mitochondria as regulators of apoptosis: doubt no more. Biochim Biophys Acta. 1998 Aug 10;1366(1-2):151–165. doi: 10.1016/s0005-2728(98)00110-8. [DOI] [PubMed] [Google Scholar]
  34. Tishler R. B., Calderwood S. K., Coleman C. N., Price B. D. Increases in sequence specific DNA binding by p53 following treatment with chemotherapeutic and DNA damaging agents. Cancer Res. 1993 May 15;53(10 Suppl):2212–2216. [PubMed] [Google Scholar]
  35. Toh Y., Kuninaka S., Oshiro T., Ikeda Y., Nakashima H., Baba H., Kohnoe S., Okamura T., Mori M., Sugimachi K. Overexpression of manganese superoxide dismutase mRNA may correlate with aggressiveness in gastric and colorectal adenocarcinomas. Int J Oncol. 2000 Jul;17(1):107–112. doi: 10.3892/ijo.17.1.107. [DOI] [PubMed] [Google Scholar]
  36. Wallace D. C. Mitochondrial diseases in man and mouse. Science. 1999 Mar 5;283(5407):1482–1488. doi: 10.1126/science.283.5407.1482. [DOI] [PubMed] [Google Scholar]
  37. Wong G. H., Elwell J. H., Oberley L. W., Goeddel D. V. Manganous superoxide dismutase is essential for cellular resistance to cytotoxicity of tumor necrosis factor. Cell. 1989 Sep 8;58(5):923–931. doi: 10.1016/0092-8674(89)90944-6. [DOI] [PubMed] [Google Scholar]
  38. Yoshikawa T., Kokura S., Tainaka K., Itani K., Oyamada H., Kaneko T., Naito Y., Kondo M. The role of active oxygen species and lipid peroxidation in the antitumor effect of hyperthermia. Cancer Res. 1993 May 15;53(10 Suppl):2326–2329. [PubMed] [Google Scholar]
  39. Zamzami N., Marchetti P., Castedo M., Zanin C., Vayssière J. L., Petit P. X., Kroemer G. Reduction in mitochondrial potential constitutes an early irreversible step of programmed lymphocyte death in vivo. J Exp Med. 1995 May 1;181(5):1661–1672. doi: 10.1084/jem.181.5.1661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Zhong W., Oberley L. W., Oberley T. D., Yan T., Domann F. E., St Clair D. K. Inhibition of cell growth and sensitization to oxidative damage by overexpression of manganese superoxide dismutase in rat glioma cells. Cell Growth Differ. 1996 Sep;7(9):1175–1186. [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES