Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1993 Mar;67(3):1175–1184. doi: 10.1128/jvi.67.3.1175-1184.1993

Genetic heterogeneity in human T-cell leukemia/lymphoma virus type II.

D K Dube 1, M P Sherman 1, N K Saksena 1, V Bryz-Gornia 1, J Mendelson 1, J Love 1, C B Arnold 1, T Spicer 1, S Dube 1, J B Glaser 1, et al.
PMCID: PMC237482  PMID: 8437209

Abstract

DNA from the peripheral blood mononuclear cells of 17 different individuals infected with human T-cell lymphoma/leukemia virus type II (HTLV-II) was successfully amplified by the polymerase chain reaction (PCR) with the primer pair SK110/SK111. This primer pair is conserved among the pol genes of all primate T-cell lymphoma viruses (PTLV) and flanks a 140-bp fragment of DNA which, when used in comparative analyses, reflects the relative degree of diversity among PTLV genomes. Cloning, sequencing, and phylogenetic comparisons of these amplified 140-bp pol fragments indicated that there are at least two distinct genetic substrains of HTLV-II in the Western Hemisphere. These data were confirmed for selected isolates by performing PCR, cloning, and sequencing with to 10 additional primer pair-probe sets specific for different regions throughout the PTLV genome. HTLV-II isolates from Seminole, Guaymi, and Tobas Indians belong in the new substrain of HTLV-II, while the prototype MoT isolate defines the original substrain. There was greater diversity among HTLV-II New World strains than among HTLV-I New World strains. In fact, the heterogeneity among HTLV-II strains from the Western Hemisphere was similar to that observed in HTLV-I and simian T-cell lymphoma/leukemia virus type I isolates from around the world, including Japan, Africa, and Papua New Guinea. Given these geographic and anthropological considerations and assuming similar mutation rates and selective forces among the PTLV, these data suggest either that HTLV-II has existed for a long time in the indigenous Amerindian population or that HTLV-II isolates introduced into the New World were more heterogeneous than the HTLV-I strains introduced into the New World.

Full text

PDF
1175

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbott M. A., Poiesz B. J., Byrne B. C., Kwok S., Sninsky J. J., Ehrlich G. D. Enzymatic gene amplification: qualitative and quantitative methods for detecting proviral DNA amplified in vitro. J Infect Dis. 1988 Dec;158(6):1158–1169. doi: 10.1093/infdis/158.6.1158. [DOI] [PubMed] [Google Scholar]
  2. Anderson D. W., Epstein J. S., Lee T. H., Lairmore M. D., Saxinger C., Kalyanaraman V. S., Slamon D., Parks W., Poiesz B. J., Pierik L. T. Serological confirmation of human T-lymphotropic virus type I infection in healthy blood and plasma donors. Blood. 1989 Nov 15;74(7):2585–2591. [PubMed] [Google Scholar]
  3. Barrantes R., Smouse P. E., Neel J. V., Mohrenweiser H. W., Gershowitz H. Migration and genetic infrastructure of the Central American Guaymi and their affinities with other tribal groups. Am J Phys Anthropol. 1982 Jun;58(2):201–214. doi: 10.1002/ajpa.1330580213. [DOI] [PubMed] [Google Scholar]
  4. Bhagavati S., Ehrlich G., Kula R. W., Kwok S., Sninsky J., Udani V., Poiesz B. J. Detection of human T-cell lymphoma/leukemia virus type I DNA and antigen in spinal fluid and blood of patients with chronic progressive myelopathy. N Engl J Med. 1988 May 5;318(18):1141–1147. doi: 10.1056/NEJM198805053181801. [DOI] [PubMed] [Google Scholar]
  5. Black A. C., Ruland C. T., Yip M. T., Luo J., Tran B., Kalsi A., Quan E., Aboud M., Chen I. S., Rosenblatt J. D. Human T-cell leukemia virus type II Rex binding and activity require an intact splice donor site and a specific RNA secondary structure. J Virol. 1991 Dec;65(12):6645–6653. doi: 10.1128/jvi.65.12.6645-6653.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Doolittle R. F., Feng D. F., Johnson M. S., McClure M. A. Origins and evolutionary relationships of retroviruses. Q Rev Biol. 1989 Mar;64(1):1–30. doi: 10.1086/416128. [DOI] [PubMed] [Google Scholar]
  8. Dube D. K., Loeb L. A. Mutants generated by the insertion of random oligonucleotides into the active site of the beta-lactamase gene. Biochemistry. 1989 Jul 11;28(14):5703–5707. doi: 10.1021/bi00440a001. [DOI] [PubMed] [Google Scholar]
  9. Ehrlich G. D., Andrews J., Sherman M. P., Greenberg S. J., Poiesz B. J. DNA sequence analysis of the gene encoding the HTLV-I p21e transmembrane protein reveals inter- and intraisolate genetic heterogeneity. Virology. 1992 Feb;186(2):619–627. doi: 10.1016/0042-6822(92)90028-n. [DOI] [PubMed] [Google Scholar]
  10. Ehrlich G. D., Glaser J. B., Abbott M. A., Slamon D. J., Keith D., Sliwkowski M., Brandis J., Keitelman E., Teramoto Y., Papsidero L. Detection of anti-HTLV-I Tax antibodies in HTLV-I enzyme-linked immunosorbent assay-negative individuals. Blood. 1989 Aug 15;74(3):1066–1072. [PubMed] [Google Scholar]
  11. Ehrlich G. D., Glaser J. B., LaVigne K., Quan D., Mildvan D., Sninsky J. J., Kwok S., Papsidero L., Poiesz B. J. Prevalence of human T-cell leukemia/lymphoma virus (HTLV) type II infection among high-risk individuals: type-specific identification of HTLVs by polymerase chain reaction. Blood. 1989 Oct;74(5):1658–1664. [PubMed] [Google Scholar]
  12. Evangelista A., Maroushek S., Minnigan H., Larson A., Retzel E., Haase A., Gonzalez-Dunia D., McFarlin D., Mingioli E., Jacobson S. Nucleotide sequence analysis of a provirus derived from an individual with tropical spastic paraparesis. Microb Pathog. 1990 Apr;8(4):259–278. doi: 10.1016/0882-4010(90)90052-r. [DOI] [PubMed] [Google Scholar]
  13. Gallo R. C. Human retroviruses: a decade of discovery and link with human disease. J Infect Dis. 1991 Aug;164(2):235–243. doi: 10.1093/infdis/164.2.235. [DOI] [PubMed] [Google Scholar]
  14. Gessain A., Boeri E., Yanagihara R., Gallo R. C., Franchini G. Complete nucleotide sequence of a highly divergent human T-cell leukemia (lymphotropic) virus type I (HTLV-I) variant from melanesia: genetic and phylogenetic relationship to HTLV-I strains from other geographical regions. J Virol. 1993 Feb;67(2):1015–1023. doi: 10.1128/jvi.67.2.1015-1023.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gessian A., Yanagihara R., Franchini G., Garruto R. M., Jenkins C. L., Ajdukiewicz A. B., Gallo R. C., Gajdusek D. C. Highly divergent molecular variants of human T-lymphotropic virus type I from isolated populations in Papua New Guinea and the Solomon Islands. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7694–7698. doi: 10.1073/pnas.88.17.7694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hall W. W., Takahashi H., Liu C., Kaplan M. H., Scheewind O., Ijichi S., Nagashima K., Gallo R. C. Multiple isolates and characteristics of human T-cell leukemia virus type II. J Virol. 1992 Apr;66(4):2456–2463. doi: 10.1128/jvi.66.4.2456-2463.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hjelle B., Appenzeller O., Mills R., Alexander S., Torrez-Martinez N., Jahnke R., Ross G. Chronic neurodegenerative disease associated with HTLV-II infection. Lancet. 1992 Mar 14;339(8794):645–646. doi: 10.1016/0140-6736(92)90797-7. [DOI] [PubMed] [Google Scholar]
  18. Hjelle B., Scalf R., Swenson S. High frequency of human T-cell leukemia-lymphoma virus type II infection in New Mexico blood donors: determination by sequence-specific oligonucleotide hybridization. Blood. 1990 Aug 1;76(3):450–454. [PubMed] [Google Scholar]
  19. Kalyanaraman V. S., Sarngadharan M. G., Robert-Guroff M., Miyoshi I., Golde D., Gallo R. C. A new subtype of human T-cell leukemia virus (HTLV-II) associated with a T-cell variant of hairy cell leukemia. Science. 1982 Nov 5;218(4572):571–573. doi: 10.1126/science.6981847. [DOI] [PubMed] [Google Scholar]
  20. Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
  21. Kwok S., Kellogg D., Ehrlich G., Poiesz B., Bhagavati S., Sninsky J. J. Characterization of a sequence of human T cell leukemia virus type I from a patient with chronic progressive myelopathy. J Infect Dis. 1988 Dec;158(6):1193–1197. doi: 10.1093/infdis/158.6.1193. [DOI] [PubMed] [Google Scholar]
  22. Lairmore M. D., Jacobson S., Gracia F., De B. K., Castillo L., Larreategui M., Roberts B. D., Levine P. H., Blattner W. A., Kaplan J. E. Isolation of human T-cell lymphotropic virus type 2 from Guaymi Indians in Panama. Proc Natl Acad Sci U S A. 1990 Nov;87(22):8840–8844. doi: 10.1073/pnas.87.22.8840. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lee H., Swanson P., Shorty V. S., Zack J. A., Rosenblatt J. D., Chen I. S. High rate of HTLV-II infection in seropositive i.v. drug abusers in New Orleans. Science. 1989 Apr 28;244(4903):471–475. doi: 10.1126/science.2655084. [DOI] [PubMed] [Google Scholar]
  24. Longo M. C., Berninger M. S., Hartley J. L. Use of uracil DNA glycosylase to control carry-over contamination in polymerase chain reactions. Gene. 1990 Sep 1;93(1):125–128. doi: 10.1016/0378-1119(90)90145-h. [DOI] [PubMed] [Google Scholar]
  25. Loughran T. P., Jr, Coyle T., Sherman M. P., Starkebaum G., Ehrlich G. D., Ruscetti F. W., Poiesz B. J. Detection of human T-cell leukemia/lymphoma virus, type II, in a patient with large granular lymphocyte leukemia. Blood. 1992 Sep 1;80(5):1116–1119. [PubMed] [Google Scholar]
  26. Malik K. T., Even J., Karpas A. Molecular cloning and complete nucleotide sequence of an adult T cell leukaemia virus/human T cell leukaemia virus type I (ATLV/HTLV-I) isolate of Caribbean origin: relationship to other members of the ATLV/HTLV-I subgroup. J Gen Virol. 1988 Jul;69(Pt 7):1695–1710. doi: 10.1099/0022-1317-69-7-1695. [DOI] [PubMed] [Google Scholar]
  27. McClure M. A., Johnson M. S., Feng D. F., Doolittle R. F. Sequence comparisons of retroviral proteins: relative rates of change and general phylogeny. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2469–2473. doi: 10.1073/pnas.85.8.2469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Merl S., Kloster B., Moore J., Hubbell C., Tomar R., Davey F., Kalinowski D., Planas A., Ehrlich G., Clark D. Efficient transformation of previously activated and dividing T lymphocytes by human T cell leukemia-lymphoma virus. Blood. 1984 Nov;64(5):967–974. [PubMed] [Google Scholar]
  29. Moore R., Dixon M., Smith R., Peters G., Dickson C. Complete nucleotide sequence of a milk-transmitted mouse mammary tumor virus: two frameshift suppression events are required for translation of gag and pol. J Virol. 1987 Feb;61(2):480–490. doi: 10.1128/jvi.61.2.480-490.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Needleman S. B., Wunsch C. D. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol. 1970 Mar;48(3):443–453. doi: 10.1016/0022-2836(70)90057-4. [DOI] [PubMed] [Google Scholar]
  31. Poiesz B. J., Ruscetti F. W., Gazdar A. F., Bunn P. A., Minna J. D., Gallo R. C. Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7415–7419. doi: 10.1073/pnas.77.12.7415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Ratner L., Philpott T., Trowbridge D. B. Nucleotide sequence analysis of isolates of human T-lymphotropic virus type 1 of diverse geographical origins. AIDS Res Hum Retroviruses. 1991 Nov;7(11):923–941. doi: 10.1089/aid.1991.7.923. [DOI] [PubMed] [Google Scholar]
  33. Rosenblatt J. D., Golde D. W., Wachsman W., Giorgi J. V., Jacobs A., Schmidt G. M., Quan S., Gasson J. C., Chen I. S. A second isolate of HTLV-II associated with atypical hairy-cell leukemia. N Engl J Med. 1986 Aug 7;315(6):372–377. doi: 10.1056/NEJM198608073150606. [DOI] [PubMed] [Google Scholar]
  34. Sagata N., Yasunaga T., Tsuzuku-Kawamura J., Ohishi K., Ogawa Y., Ikawa Y. Complete nucleotide sequence of the genome of bovine leukemia virus: its evolutionary relationship to other retroviruses. Proc Natl Acad Sci U S A. 1985 Feb;82(3):677–681. doi: 10.1073/pnas.82.3.677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Saksena N. K., Sherman M. P., Yanagihara R., Dube D. K., Poiesz B. J. LTR sequence and phylogenetic analyses of a newly discovered variant of HTLV-I isolated from the Hagahai of Papua New Guinea. Virology. 1992 Jul;189(1):1–9. doi: 10.1016/0042-6822(92)90675-f. [DOI] [PubMed] [Google Scholar]
  36. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sarich V. M., Wilson A. C. Generation time and genomic evolution in primates. Science. 1973 Mar 16;179(4078):1144–1147. doi: 10.1126/science.179.4078.1144. [DOI] [PubMed] [Google Scholar]
  38. Schwartz D. E., Tizard R., Gilbert W. Nucleotide sequence of Rous sarcoma virus. Cell. 1983 Mar;32(3):853–869. doi: 10.1016/0092-8674(83)90071-5. [DOI] [PubMed] [Google Scholar]
  39. Seiki M., Hattori S., Hirayama Y., Yoshida M. Human adult T-cell leukemia virus: complete nucleotide sequence of the provirus genome integrated in leukemia cell DNA. Proc Natl Acad Sci U S A. 1983 Jun;80(12):3618–3622. doi: 10.1073/pnas.80.12.3618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sherman M. P., Saksena N. K., Dube D. K., Yanagihara R., Poiesz B. J. Evolutionary insights on the origin of human T-cell lymphoma/leukemia virus type I (HTLV-I) derived from sequence analysis of a new HTLV-I variant from Papua New Guinea. J Virol. 1992 Apr;66(4):2556–2563. doi: 10.1128/jvi.66.4.2556-2563.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Sodroski J., Trus M., Perkins D., Patarca R., Wong-Staal F., Gelmann E., Gallo R., Haseltine W. A. Repetitive structure in the long-terminal-repeat element of a type II human T-cell leukemia virus. Proc Natl Acad Sci U S A. 1984 Aug;81(15):4617–4621. doi: 10.1073/pnas.81.15.4617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Sullivan M. T., Williams A. E., Fang C. T., Grandinetti T., Poiesz B. J., Ehrlich G. D. Transmission of human T-lymphotropic virus types I and II by blood transfusion. A retrospective study of recipients of blood components (1983 through 1988). The American Red Cross HTLV-I/II Collaborative Study Group. Arch Intern Med. 1991 Oct;151(10):2043–2048. [PubMed] [Google Scholar]
  43. Toyoshima H., Itoh M., Inoue J., Seiki M., Takaku F., Yoshida M. Secondary structure of the human T-cell leukemia virus type 1 rex-responsive element is essential for rex regulation of RNA processing and transport of unspliced RNAs. J Virol. 1990 Jun;64(6):2825–2832. doi: 10.1128/jvi.64.6.2825-2832.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Wells K. H., Byrne B. C., Poiesz B. J. Detection, prevention, and treatment of retroviral infections. Semin Oncol. 1990 Jun;17(3):295–320. [PubMed] [Google Scholar]
  45. Wong-Staal F., Gallo R. C. Human T-lymphotropic retroviruses. Nature. 1985 Oct 3;317(6036):395–403. doi: 10.1038/317395a0. [DOI] [PubMed] [Google Scholar]
  46. Yoshida M., Miyoshi I., Hinuma Y. Isolation and characterization of retrovirus from cell lines of human adult T-cell leukemia and its implication in the disease. Proc Natl Acad Sci U S A. 1982 Mar;79(6):2031–2035. doi: 10.1073/pnas.79.6.2031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Zharkikh A., Li W. H. Statistical properties of bootstrap estimation of phylogenetic variability from nucleotide sequences: II. Four taxa without a molecular clock. J Mol Evol. 1992 Oct;35(4):356–366. doi: 10.1007/BF00161173. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES