Skip to main content
Journal of Biological Physics logoLink to Journal of Biological Physics
. 2008 Mar 18;33(3):213–246. doi: 10.1007/s10867-008-9056-5

Going Beyond a Mean-field Model for the Learning Cortex: Second-Order Statistics

M T Wilson 1,, Moira L Steyn-Ross 1, D A Steyn-Ross 1, J W Sleigh 2
PMCID: PMC2374884  PMID: 19669541

Abstract

Mean-field models of the cortex have been used successfully to interpret the origin of features on the electroencephalogram under situations such as sleep, anesthesia, and seizures. In a mean-field scheme, dynamic changes in synaptic weights can be considered through fluctuation-based Hebbian learning rules. However, because such implementations deal with population-averaged properties, they are not well suited to memory and learning applications where individual synaptic weights can be important. We demonstrate that, through an extended system of equations, the mean-field models can be developed further to look at higher-order statistics, in particular, the distribution of synaptic weights within a cortical column. This allows us to make some general conclusions on memory through a mean-field scheme. Specifically, we expect large changes in the standard deviation of the distribution of synaptic weights when fluctuation in the mean soma potentials are large, such as during the transitions between the “up” and “down” states of slow-wave sleep. Moreover, a cortex that has low structure in its neuronal connections is most likely to decrease its standard deviation in the weights of excitatory to excitatory synapses, relative to the square of the mean, whereas a cortex with strongly patterned connections is most likely to increase this measure. This suggests that fluctuations are used to condense the coding of strong (presumably useful) memories into fewer, but dynamic, neuron connections, while at the same time removing weaker (less useful) memories.

Keywords: Mean-field, Cortex, Memory, Learning, Modelling

References

  • 1.Wilson, H.R., Cowan, J.D.: Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12, 1–24 (1972) [DOI] [PMC free article] [PubMed]
  • 2.Nunez, P.L.: The brain wave function: a model for the EEG. Math. Biosci. 21, 279–297 (1974) [DOI]
  • 3.Freeman, W.J.: Predictions on neocortical dynamics derived from studies in paleocortex. In: Basar, E., Bullock, T.H. (eds.) Induced Rhythms of the Brain, chap. 9, pp. 183–199. Birkhaeuser, Boston (1992)
  • 4.Wright, J.J., Liley, D.T.J.: Dynamics of the brain at global and microscopic scales: neural networks and the EEG. Behav. Brain Sci. 19, 285–316 (1996)
  • 5.Robinson, P.A., Rennie, C.J., Wright, J.J.: Propagation and stability of waves of electrical activity in the cerebral cortex. Phys. Rev. E 56, 826–840 (1997) [DOI]
  • 6.Liley, D.T.J., Cadusch, P.J., Wright, J.J.: A continuum theory of electro-cortical activity. Neurocomputers 26–27, 795–800 (1999) [DOI]
  • 7.Rennie, C.J., Wright, J.J., Robinson, P.A.: Mechanisms for cortical electrical activity and emergence of gamma rhythm. J. Theor. Biol. 205, 17–35 (2000) [DOI] [PubMed]
  • 8.Steyn-Ross, M.L., Steyn-Ross, D.A., Sleigh, J.W.: Modelling general anaesthesia as a first-order phase transition in the cortex. Prog. Biophys. Mol. Biol. 85, 369–385 (2004) [DOI] [PubMed]
  • 9.Hutt, A., Bestehorn, M., Wennekers, T.: Pattern formation in intracortical neuronal fields. Network 14, 351–368 (2003) [PubMed]
  • 10.Kramer, M.A., Kirsch, H.E., Szeri, A.J.: Pathological pattern formation and epileptic seizures. J. R. Soc. Lond. Interface 2, 113 (2005) [DOI] [PMC free article] [PubMed]
  • 11.Chizhov, A.V., Graham, L.J., Turbin, A.A.: Simulation of neural population dynamics with a refractory density approach and a conductance-based threshold neuron model. Neurocomputing 70(1–3), 252–262 (2006) [DOI]
  • 12.Bazhenov, M., Timofeev, I., Steriade, M., Sejnowski, T.J.: Model of thalamocortical slow-wave sleep oscillations and transitions to activated states. J. Neurosci. 22, 8691–8704 (2002) [DOI] [PMC free article] [PubMed]
  • 13.Compte, A., Sanchez-Vives, M.V., McCormick, D.A., Wang, X.J.: Cellular and network mechanisms of slow oscillatory activity (<1 Hz) and wave propagations in a cortical network model. J. Neurophysiol. 89, 2707–2725 (2003) [DOI] [PubMed]
  • 14.Hill, S., Tononi, G.: Modeling sleep and wakefulness in the thalamocortical system. J. Neurophysiol. 93, 1671–1698 (2005) [DOI] [PubMed]
  • 15.Robinson, P.A., Rennie, C.J., Rowe, D.L., O’Connor, S.C., Wright, J.J., Gordon, E., Whitehouse, R.W.: Neurophysical modeling of brain dynamics. Neuropsychopharmacology 28, S74–S79 (2003) [DOI] [PubMed]
  • 16.Robinson, P.A., Rennie, C.J., Wright, J.J., Bahramali, H., Gordon, E., Rowe, D.L.: Prediction of electroencephalographic spectra from neurophysiology. Phys. Rev. E 63, 021,903 (2001) [DOI] [PubMed]
  • 17.Wilson, M.T., Steyn-Ross, D.A., Sleigh, J.W., Steyn-Ross, M.L., Wilcocks, L.C., Gillies, I.P.: The k-complex and slow oscillation in terms of a mean-field cortical model. J. Comput. Neurosci. 21, 243–257 (2006) [DOI] [PubMed]
  • 18.Bojak, I., Liley, D.T.J.: Modelling the effects of anaesthesia on the electroencephalogram. Phys. Rev. E 71, 41902 (2005) [DOI] [PubMed]
  • 19.Wilson, M.T., Steyn-Ross, M.L., Steyn-Ross, D.A., Sleigh, J.W.: Predictions and simulations of cortical dynamics during natural sleep using a continuum approach. Phys. Rev. E 72, 051910 1–14 (2005) [DOI] [PubMed]
  • 20.Bienenstock, E.L., Cooper, L.N., Munro, P.W.: Theory for the development of neuron selectivity: orientation specificity and binocular interation in visual cortex. J. Neurosci. 2, 32–48 (1982) [DOI] [PMC free article] [PubMed]
  • 21.Bienenstock, E., Lehmann, D.: Regulated criticality in the brain? Adv. Complex Systems 1, 361–384 (1998) [DOI]
  • 22.Sandberg, A., Tegnér, J., Lansner, A.: A working memory model based on fast Hebbian learning. Netw. Comput. Neural Syst. 14, 789–802 (2003) [DOI] [PubMed]
  • 23.Mongillo, G., Amit, D.J., Brunel, N.: Retrospective and prospective persistent activity induced by Hebbian learning in a recurrent cortical network. Eur. J. Neurosci. 18, 2011–2024 (2003) [DOI] [PubMed]
  • 24.Hebb, D.O.: The Organization of Behaviour. Wiley, New York (1949)
  • 25.Steyn-Ross, M.L., Steyn-Ross, D.A., Sleigh, J.W., Wilson, M.T., Wilcocks, L.C.: A mechanism for learning and memory erasure in a white-noise driven sleeping cortex. Phys. Rev. E 72, 061,910 (2005) [DOI] [PubMed]
  • 26.Stetter, M.: Dynamic functional tuning of nonlinear cortical networks. Phys. Rev. E 73, 031903 (2006) [DOI] [PubMed]
  • 27.Steyn-Ross, D.A., Steyn-Ross, M.L., Sleigh, J.W., Wilson, M.T., Gillies, I.P., Wright, J.J.: The sleep cycle modelled as a cortical phase transition. J. Biophys. 31, 547–569 (2005) [DOI] [PMC free article] [PubMed]
  • 28.Tononi, G., Cirelli, C.: Sleep function and synaptic homeostatis. Sleep Med. Rev. 10, 49–62 (2006) [DOI] [PubMed]
  • 29.Mountcastle, V.B.: The columnar organization of the neocortex. Brain 120, 701–722 (1997) [DOI] [PubMed]
  • 30.Sejnowski, T.J.: Storing covariance with nonlinearly interacting neurons. J. Math. Biol. 4, 303–321 (1977) [DOI] [PubMed]
  • 31.Douglas, R.J., Martin, K.A.: Recurrent neuronal circuits in the neocortex. Curr. Biol. 17(13), R496 (2007) [DOI] [PubMed]
  • 32.Thomson, A.M., Bannister, A.P.: Interlaminar connections in the neocortex. Cerebral Cortex 13, 5–14 (2003) [DOI] [PubMed]
  • 33.Tononi, G., Sporns, O.: Measuring information integration. BMC Neurosci. 4, 31 (2003) [DOI] [PMC free article] [PubMed]
  • 34.Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47–97 (2002) [DOI]
  • 35.Kloeden, P.E., Platen, E.: Numerical Solution of Stochastc Differential Equations. Springer, Berlin (1992)
  • 36.Rudolph, M., Pospischil, M., Timofeev, I., Destexhe, A.: Inhibition determines membrane potential dynamics and controls action potential generation in awake and sleeping cat cortex. J. Neurosci. 27(20), 5280–5290 (2007) [DOI] [PMC free article] [PubMed]
  • 37.Blumenfeld, B., Preminger, S., Sagi, D.: Dynamics of memory representations in networks with novelty-facilitated synaptic plasticity. Neuron 52, 383–394 (2006) [DOI] [PubMed]
  • 38.Hopfield, J.J.: Neural networks and physical systems with emergent computational abilities. Proc. Natl. Acad. Sci. U. S. A. 78, 2554–2558 (1982) [DOI] [PMC free article] [PubMed]
  • 39.Hopfield, J.J.: Neurons with graded response have collective computational properties like those of two state neurons. Proc. Natl. Acad. Sci. U. S. A. 81, 3088–3092 (1984) [DOI] [PMC free article] [PubMed]
  • 40.Abraham, W.C., Robins, A.: Memory retention—the synaptic stability versus plasticity dilemma. Trends Neurosci. 28(2), 73–78 (2005) [DOI] [PubMed]
  • 41.Horn, D., Levy, N., Ruppin, E.: Memory maintenance via neuronal regulation. Neural Comput. 10, 1–18 (1998) [DOI] [PubMed]
  • 42.Pantic, L., Torres, J.J., Kappen, H.J., Gielen, S.C.A.M.: Associate memory with dynamic synapses. Neural Comput. 14, 2903–2923 (2002) [DOI] [PubMed]
  • 43.Steriade, M., Núnez, A., Amzica, F.: A novel slow (<1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J. Neurosci. 13, 3252–3265 (1993) [DOI] [PMC free article] [PubMed]
  • 44.Crochet, S., Chauvette, S., Boucetta, S., Timofeev, I.: Modulation of synaptic transmission in neocortex by network activities. Eur. J. Neurosci. 21, 1030–1044 (2005) [DOI] [PubMed]
  • 45.Massimini, M., Rosanova, M., Mariotti, M.: EEG slow (∼1 Hz) waves are associated with nonstationarity of thalamo-cortical sensory processing in the sleeping human. J. Neurophysiol. 89, 1205–1213 (2003) [DOI] [PubMed]
  • 46.Steriade, M., Timofeev, I., Grenier, F.: Natural waking and sleep states: a view from inside neocortical neurons. J. Neurophysiol. 85, 1969–1985 (2001) [DOI] [PubMed]
  • 47.Battaglia, F.P., Sutherland, G.R., McNaughton, B.L.: Hippocampal sharp wave bursts conincide with neocortical “up-state” transitions. Learn. Mem. 11, 697–704 (2004) [DOI] [PMC free article] [PubMed]
  • 48.Marshall, L., Helgadóttir, H., Mölle, M., Born, J.: Boosting slow oscillations during sleep potentiates memory. Nature 444, 610–613 (2006) [DOI] [PubMed]

Articles from Journal of Biological Physics are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES