Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 2001 Sep;85(6):909–916. doi: 10.1054/bjoc.2001.2022

The topology of plasminogen binding and activation on the surface of human breast cancer cells

N M Andronicos 1, M Ranson 1
PMCID: PMC2375062  PMID: 11556845

Abstract

The urokinase-dependent activation of plasminogen by breast cancer cells plays an important role in metastasis. We have previously shown that the metastatic breast cancer cell line MDA-MB-231 over-expresses urokinase and binds and efficiently activates plasminogen at the cell surface compared to non-metastatic cells. The aim of this study was to further characterise plasminogen binding and determine the topology of cell surface-bound plasminogen in terms of its potential for activation. The lysine-dependent binding of plasminogen at 4°C to MDA-MB-231 cells was stable and resulted in an activation-susceptible conformation of plasminogen. Topologically, a fraction of bound plasminogen was co-localised with urokinase on the surfaces of MDA-MB-231 cells where it could be activated to plasmin. At 37°C plasmin was rapidly lost from the cell surface. Apart from actin, other candidate plasminogen receptors were either not expressed or did not co-localise with plasminogen at the cell surface. Thus, based on co-localisation with urokinase, plasminogen binding is partitioned into two functional pools on the surface of MDA-MB-231 cells. In conclusion, these results shed further light on the functional organisation of the plasminogen activation cascade on the surface of a metastatic cancer cell. © 2001 Cancer Research Campaignhttp://www.bjcancer.com

Keywords: plasminogen binding, co-localisation, urokinase, breast cancer cells

Full Text

The Full Text of this article is available as a PDF (128.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andronicos N. M., Ranson M., Bognacki J., Baker M. S. The human ENO1 gene product (recombinant human alpha-enolase) displays characteristics required for a plasminogen binding protein. Biochim Biophys Acta. 1997 Jan 4;1337(1):27–39. doi: 10.1016/s0167-4838(96)00146-x. [DOI] [PubMed] [Google Scholar]
  2. Bastiaens P. I., Jovin T. M. Microspectroscopic imaging tracks the intracellular processing of a signal transduction protein: fluorescent-labeled protein kinase C beta I. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8407–8412. doi: 10.1073/pnas.93.16.8407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Christensen U., Mølgaard L. Stopped-flow fluorescence kinetic studies of Glu-plasminogen. Conformational changes triggered by AH-site ligand binding. FEBS Lett. 1991 Jan 28;278(2):204–206. doi: 10.1016/0014-5793(91)80117-l. [DOI] [PubMed] [Google Scholar]
  4. Cubellis M. V., Nolli M. L., Cassani G., Blasi F. Binding of single-chain prourokinase to the urokinase receptor of human U937 cells. J Biol Chem. 1986 Dec 5;261(34):15819–15822. [PubMed] [Google Scholar]
  5. Danø K., Rømer J., Nielsen B. S., Bjørn S., Pyke C., Rygaard J., Lund L. R. Cancer invasion and tissue remodeling--cooperation of protease systems and cell types. APMIS. 1999 Jan;107(1):120–127. doi: 10.1111/j.1699-0463.1999.tb01534.x. [DOI] [PubMed] [Google Scholar]
  6. Dudani A. K., Ganz P. R. Endothelial cell surface actin serves as a binding site for plasminogen, tissue plasminogen activator and lipoprotein(a). Br J Haematol. 1996 Oct;95(1):168–178. doi: 10.1046/j.1365-2141.1996.7482367.x. [DOI] [PubMed] [Google Scholar]
  7. Duffy M. J., Maguire T. M., McDermott E. W., O'Higgins N. Urokinase plasminogen activator: a prognostic marker in multiple types of cancer. J Surg Oncol. 1999 Jun;71(2):130–135. doi: 10.1002/(sici)1096-9098(199906)71:2<130::aid-jso14>3.0.co;2-9. [DOI] [PubMed] [Google Scholar]
  8. Ellis V., Whawell S. A., Werner F., Deadman J. J. Assembly of urokinase receptor-mediated plasminogen activation complexes involves direct, non-active-site interactions between urokinase and plasminogen. Biochemistry. 1999 Jan 12;38(2):651–659. doi: 10.1021/bi981714d. [DOI] [PubMed] [Google Scholar]
  9. Lind S. E., Smith C. J. Actin stimulates plasmin generation by tissue and urokinase-type plasminogen activators. Arch Biochem Biophys. 1993 Nov 15;307(1):138–145. doi: 10.1006/abbi.1993.1572. [DOI] [PubMed] [Google Scholar]
  10. O'Mullane M. J., Baker M. S. Loss of cell viability dramatically elevates cell surface plasminogen binding and activation. Exp Cell Res. 1998 Jul 10;242(1):153–164. doi: 10.1006/excr.1998.4067. [DOI] [PubMed] [Google Scholar]
  11. Ranson M., Andronicos N. M., O'Mullane M. J., Baker M. S. Increased plasminogen binding is associated with metastatic breast cancer cells: differential expression of plasminogen binding proteins. Br J Cancer. 1998 May;77(10):1586–1597. doi: 10.1038/bjc.1998.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Redlitz A., Fowler B. J., Plow E. F., Miles L. A. The role of an enolase-related molecule in plasminogen binding to cells. Eur J Biochem. 1995 Jan 15;227(1-2):407–415. doi: 10.1111/j.1432-1033.1995.tb20403.x. [DOI] [PubMed] [Google Scholar]
  13. Redlitz A., Tan A. K., Eaton D. L., Plow E. F. Plasma carboxypeptidases as regulators of the plasminogen system. J Clin Invest. 1995 Nov;96(5):2534–2538. doi: 10.1172/JCI118315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Stonelake P. S., Jones C. E., Neoptolemos J. P., Baker P. R. Proteinase inhibitors reduce basement membrane degradation by human breast cancer cell lines. Br J Cancer. 1997;75(7):951–959. doi: 10.1038/bjc.1997.166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Vassalli J. D., Baccino D., Belin D. A cellular binding site for the Mr 55,000 form of the human plasminogen activator, urokinase. J Cell Biol. 1985 Jan;100(1):86–92. doi: 10.1083/jcb.100.1.86. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES